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Abstract

In this paper, we introduce the concept of personal driv-
ing diary. A personal driving diary is a multimedia archive
of a person’s daily driving experience, describing important
driving events of the user with annotated videos. This pa-
per presents an automated system that constructs such mul-
timedia diary by analyzing videos obtained from a vehicle-
mounted camera. The proposed system recognizes impor-
tant interactions between the driving vehicle and the others
from videos (e.g. accident, overtaking, ...), and labels them
together with its contextual knowledge on the vehicle (e.g.
its physical location on the map) to construct an event log.
A novel decision tree based activity recognizer that incre-
mentally learns driving events from first-person view videos
is designed. The constructed diary enables efficient search-
ing and event-based browsing of video clips, which helps
the user to retrieve videos of dangerous situations and an-
alyze his/her driving habits statistically. Our experiment
confirms that the proposed system reliably generates driv-
ing diaries by annotating learned vehicle events.

1. Introduction

A personal driving diary is a multimedia archive of a
person’s daily driving experience. It illustrates important
driving events of the user, providing recorded videos of the
events and describing when and where the events have oc-
curred. Figure 1 shows an example driving diary. The driv-
ing diary will not only enable interactive search of video
segments with important vehicle events such as accidents,
but also help the user to analyze his/her driving habits and
patterns (e.g. dangerous overtaking and sudden stops) sta-
tistically for safer driving. The user will be able to retrieve
and examine an event log (i.e. a diary) with videos taken
from his/her vehicle, and use it for various purposes.

This paper presents an automated system that generates
such multimedia diary by analyzing videos obtained from
a vehicle-mounted camera. The objective is to construct

Video (Temporal)

Event Log (Semantic)

Overtake
- Time: 10:21:31-10:21:33
- Location: (2.1, 0.1) km
- Note
Avg. Speed: 60km/h

Sudden Stop
- Time: 10:42:18-10:42:21
- Location: (3.8, -3.1) km
- Note
Cause: Human
Avg. Speed: 15km/h
Stop Distance: 0.01km

Map (Spatial)

Figure 1. An example personal driving diary.

a system that automatically annotates and summarizes ob-
tained first-person viewpoint videos, enabling fast, efficient,
and used-oriented browsing (and analysis) of driving events.
The trend of mounting video cameras on vehicles is grow-
ing rapidly (e.g. ‘black box cameras’ for accident recording
[13]), and most of vehicles will equip cameras observing
the front in the near future corresponding to the societal in-
terests. Our motivation is to provide a personal summary of
vehicle events by utilizing such cameras, and develop an ef-
ficient way of searching important video segments. In this
paper, we design and implement a novel system integrat-
ing various components including visual odometry, pedes-
trian detection, vehicle detection, tracking, and activity-
level event recognition/logging. Several existing computer
vision methodologies are combined with our newly de-
signed activity recognition component, reliably generating
video diaries for drivers.

Notably, we designed our personal driving diary system
to have an interactive learning property. Instead of limiting
the system to only analyze predefined events, the proposed
methodology enables interactive additions of user-specific
events based on his/her necessity. That is, a user may add
new events to be annotated in the future interactively with-
out trying to retrain the entire system. Our system detects
and labels interactively learned events, constructing a driv-
ing diary tailored for the user.



The contribution of this paper is the introduction of the
concept of personal driving diaries. We present a novel
paradigm that everyday driving experience of drivers can
be annotated and archived, and discuss methodologies for
the generation of event-based personal driving diaries from
first-person view videos. The personal driving diary con-
structed by our system will enable efficient searching (and
retrieval) of vehicle events. Even though there has been
previous attempts to apply computer vision algorithms for
vehicle-mounted cameras (e.g. [6]), a system to analyze ve-
hicle activities (i.e. events) from them has not been studied
in depth previously. Furthermore, we extend our previous
event recognition methodology for incremental learning of
novel events. Our event recognition methodology which en-
ables capturing of personal statistics will benefit other types
of life-logging systems as well.

2. Related works

Life-logging. Life-logging systems using wearable cam-
eras have been developed to record a person’s everyday ex-
periences [8, 7, 4]. Hori and Aizawa [8] utilized multiple
sensors (e.g. cameras, GPS, brain-wave analyzer, ...), au-
tomatically logging videos based on various keys from sys-
tems components such as a face detection and a GPS lo-
calization. Doherty et al. [4] also used a wearable cam-
era. They have classified each image scene (i.e. frame) into
a number of simple event categories using image features
(e.g. SIFT), showing a potential that videos can be anno-
tated based on user events.

However, most of previous life-logging systems focused
on the elementary recording of entire video data [12],
instead of constructing an interactive diary composed of
videos of specific events. Previous systems attempted to
construct general purpose achieves by relying on the index
created by extracting simple image-based features, rather
than performing a video-based analysis to interpret activity-
level (i.e. complex) events. Furthermore, an ability to inter-
actively add new event categories and videos has been very
limited in previous life-logging systems.

Human activity recognition. Human activity recognition
is a computer vision methodology essential for analyzing
videos. Particularly, activity recognition methodologies uti-
lizing spatio-temporal features from videos have obtained
a large amount of interests [11, 5, 10]. However, even
though previous systems successfully recognized events
from videos with various settings (e.g. backgrounds), lit-
tle attempts have been made to analyze activity videos from
moving first-person view cameras. Furthermore, previ-
ous systems were designed to learn activities using off-line
training, preventing interactive learning of complex events.

Vehicle cameras. As described in the introduction, increas-
ing number of vehicles are equipping cameras for safety and
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Figure 2. An overall architecture of our driving diary system.

accident recording purposes these days [13]. Various pedes-
trian detection algorithms have been developed and adopted
for vehicle-mounted cameras [6], in order to support safer
driving of drivers. However, most of the previous works
limited themselves to accident prevention using simple per-
frame detection, and did not attempt to analyze events from
the videos.

3. Framework

In this section, we present an overall framework for our
personal driving diary system. The idea is to provide a com-
plete system architecture, so that an implemented system
is installed on a mobile camera system (e.g. a black box
camera or a smart phone) to annotate videos taken from a
driving vehicle. Various computer vision techniques are de-
signed and adopted to extract semantic information from
first-person view videos containing vehicle events.

Our driving diary system is composed of four compo-
nents: geometry component, detection component, tracking
component, and event analysis component. These compo-
nents obtain visual inputs (i.e. videos) from the camera and
interact each other to analyze events involving the driving
vehicle itself, other vehicles, and pedestrians. Figure 2 il-
lustrates the overall architecture.

The geometry component uses a visual odometry algo-
rithm to measure the self-motion of the camera. That is,
the trajectory of the driving vehicle is obtained with respect
to its initial global position, enabling our diary to record
the vehicle’s location on the map and provide an appropri-
ate browsing interface. The detection component detects
pedestrians and vehicles at every image frame of the input
video. In addition, based on the geometrical structure of
the scene analyzed by the geometry component, it estimates
locations (i.e. bounding boxes) of the detected objects in
global world coordinates. The tracking component applies
object tracking algorithms to obtain trajectories of detected
pedestrians and vehicles.

Finally, our event analysis component annotates all on-
going events from continuous streams of videos using the
vehicle’s self-trajectory from the geometry component and



the other trajectories from the tracking component. High-
level events such as ‘overtaking’ and ‘sudden stopping
caused by pedestrians’ are recognized hierarchically using
trajectory-based features. Our event detection component
allows interactive additions of new driving events. Events
are annotated together with the driving vehicle’s location
and other contextual information.

As a result, our system converts an input driving video
into a diary of semantically meaningful events. A user in-
terface has been designed so that the user retrieves videos
of interesting events from the diary. As discussed above, an
interface to add new event to be annotated in the future is
supported by our system as well. In the following section,
we discuss each of the components in detail.

4. System
4.1. Geometry component

The geometry component localizes the driving vehicle
and estimates planar homography of the ground. Visual
odometry calculates relative pose between two adjacent im-
ages, which is accumulated for global localization [9] (Fig-
ure 4). Locally invariant features are extracted each frame,
whose matching is performed using KLT optical flows. In
addition, the geometric relation (i.e. an essential matrix)
is estimated using a five-point algorithm with an adaptive
RANSAC [2]. Estimating a ground plane using regular pat-
terns on the ground (e.g. lane and crosswalk) enables global
localization of other objects on it. Our geometry component
computes a mapping from image coordinates to metric co-
ordinates for objects.

4.2. Detection component

The detection component detects pedestrians and vehi-
cles, and estimates their locations at every image frame
(Figure 3). The estimated locations of the objects in image
coordinates are transformed into global coordinates based
on the information from the geometry component. We
adopt histogram of gradients (HOG) features [3] and ap-
ply a sliding windows method to detect pedestrians. Fur-
thermore, we implemented the sliding windows to be more
efficient by filtering out windows with little vertical edges.
We focused on the fact that a pedestrian is an upright per-
son who is walking, and he/she produces a fair number of
vertical edges. For the vehicle detection, we apply the Viola
and Jones’ method [15] to detect rear-view of appearing ve-
hicles. Three types of vehicles (sedans, SUVs, and buses)
are detected as a result.

4.3. Tracking component

Our tracking component maintains a single hypothesis
for each object, and relies on color appearance model of the

Figure 3. Example pedestrian/vehicle detection results obtained
from our detection component.
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Figure 4. Example trajectories. Green trajectories show the driv-
ing vehicle’s tracks estimated using visual odometry, blue is for a
pedestrian, and red is for a vehicle. The left trajectories are from a
‘sudden stop’, and the right ones are from an ‘overtaking’.

objects for the tracking. Results from the detection com-
ponent are matched with the maintained object hypothe-
ses using a greedy algorithm described in [16]. Similarity
between each detection result and each object hypothesis
is computed using its position, size, and color histogram.
Next, these similarities are sorted to check for the valid
match. For each of unmatched detections, a new hypoth-
esis is created and a color template is built from the corre-
sponding image region (i.e. bounding box) with an elliptic
mask. Whenever the match fails, a template tracker is ap-
plied to update the unmatched object hypotheses. The color
template is updated only when the hypothesis succeeds to
match with a detection result. The actual trajectories are
generated by applying extended Kalman filters (EKFs) with
a constant velocity model in global world coordinates (e.g.
Figure 4).

4.4. Event analysis component

The role of the event analysis component is to label all
ongoing events of the vehicle given a continuous video se-
quence. In contrast to previous logging systems, we de-
signed our event analysis component to recognize com-
plex events learned interactively: We extended the previ-
ous approach of spatio-temporal relationship match (STR-
match) [10] that obtained successful results on human ac-
tivity recognition, so that events are learned and recognized
in an additive fashion. Learned driving events are repre-
sented in terms of simpler sub-events, and they are recog-
nized by hierarchically analyzing the relationships among
the detected sub-events.



Figure 5. Example spatio-temporal relationship (STR) decision
tree of a driving event ‘overtake’. The left child of a node is acti-
vated when the relation corresponding to the node is true, and the
right child is activated other wise.

First, nine types of elementary sub-events that consist
complex vehicle events are recognized, which serve as
building blocks of our hierarchical event detection process:
‘car passing another’, ‘car passed by another’, ‘car is at
front of another’, ‘car at behind of another’, ‘cars side-by-
side’, ‘accelerating’, ‘decelerating’, ‘vehicle stopped’, and
‘pedestrian in front’. These sub-events are used as the sys-
tem’s vocabulary to describe complex driving events. The
system recognizes the sub-events using four types of fea-
tures extracted from local 3-D XYT trajectories of the driv-
ing vehicle and the other objects (i.e. pedestrians and vehi-
cles): ‘orientation’, ‘velocity’, ‘acceleration’, and ‘relative
XY coordinate of the interacting vehicle’. Time intervals
(i.e. pairs of starting time and ending time) of all occurring
sub-events are recognized, and are provided to the system
for the further analysis.

We implement a decision-tree version of the STR-match
to recognize vehicle activities from detected sub-events,
while making it possess an interactive learning ability. Our
event analysis component learns decision-tree classifiers
from training examples, automatically mining important
spatio-temporal patterns (i.e. relationships) among sub-
events. That is, we statistically train an event detector per
activity, which will make the videos containing the corre-
sponding event to reach a leaf node with the ‘true’ label
when tested with the decision tree.

Our STR decision tree is a binary decision tree where
each node of it corresponds to a predicate describing a con-
dition of a particular sub-event (e.g. its duration greater
than a certain threshold) or a relationship between two sub-
events (e.g. a time interval of one sub-event must occur dur-
ing the other’s). Allen’s temporal predicates [1] (equals, be-
fore, meets, overlaps, during, starts, and finishes) and their
inverse predicates are adopted to describe relations between
two sub-events. These predicates not only describe that cer-
tain sub-events must occur in order for the activity to occur,
but also describe necessary temporal relations among the
sub-events’ time intervals.

The recognition is performed by traversing the tree from
the root to one of its leaves, sequentially testings whether
its sub-event detection results satisfy the predicate of each
node. If it does, the recognition system traverses to the left
child of the node. Otherwise, it must go to the right child.
Figure 5 shows an example STR decision tree learned from
training video sequences. The decision tree illustrates that
in order for a driving event of ‘overtaking’ to occur, its sub-
events ‘car at behind of another car’, ‘cars side-by-side’,
and ‘car at front of another car’ must occur while satisfying
a particular structure.

The decision trees are learned by iteratively searching for
the predicate which maximizes the gain given the sub-event
detection results of training sequences. The new node (i.e.
the predicate) providing the maximum information gain is
added to the tree one by one based on training examples.
The gain of the decision tree caused by adding a new predi-
cate to one of its leaves is defined as follows:

Sy
5]

Entropy(Sy)
ey

where v is a binary variable, S is a set of training examples,
and .S, is the subset of S having value v for node N. Here,
the entropy is defined as:

Gain(S, N) = Entropy(S) - Y

Entropy(S) = —pologa(po) — p1loga(p1) 2

where py is the fraction of negative examples in .S, and p;
is the fraction of positive examples in .S. If S is divided into
two sets of an identical size, the entropy is 1 and we have
the gain of 0.

Essentially, our learning algorithm is searching for the
predicate that divides the training examples into two sets
whose size difference is the greatest (i.e. most unbalanced).
Each of the left child and the right child of the added node
either becomes a leaf node that decides that the driving
event has occurred, or becomes an intermediate node wait-
ing for another predicate to be added. A greedy search strat-
egy is applied to find the STR decision tree that provides
maximum gain given training videos.

In order to make our STR decision tree learning incre-
mental (i.e. in order to enable interactive addition of user-
specific events), we take advantage of the incremental tree
induction (ITT) method [14]. The ITI method is incorpo-
rated into our STR tree learning process, which recursively
updates the trees after each addition of a new video example
to ensure the optimum gain. That is, our trees allow a user
to feed videos of the new event to be annotated.

As a result, our system recognizes complex vehicle
events (e.g. overtaking) incrementally learned from training
videos. The personal driving diary is constructed by con-
catenating annotated driving events while describing other
context including locations of the vehicle, vehicle tracking
histories, and/or pedestrian tracking histories.



S. Experiments

In this section, we evaluate the accuracy of the personal
driving diary generated by our system. Our driving diary
is an event-based log of the user’s driving history, implying
that the correctness of the diary must statistically be eval-
uated by measuring the event annotation performance. For
our experiment, we constructed a new dataset with driving
video scenes taken from a first-person view camera attached
to a vehicle (Subsect. 5.1). Using this dataset involving var-
ious types of driving events, we tested our system’s ability
to annotate time intervals of ongoing events (Subsect. 5.2).

5.1. Dataset

Our dataset focuses on six types of common driving
events which are semantically important: long stopping,
overtake, overtaken, sudden acceleration, sudden stop -
pedestrian, and sudden stop - vehicle. A ‘long stopping’
describes the situation which the driving vehicle was stay-
ing stationary for more than 15 seconds. A ‘sudden stop -
pedestrian’ indicates that the car was suddenly stopped be-
cause of the pedestrian ahead, and a ‘sudden stop - vehicle’
corresponds to an event of the car being stopped by another
car in its front.

We have collected more than 100 minutes of driving
videos from a vehicle-mounted camera. The camera was
mounted under the rear-view mirror, observing the front.
The dataset is segmented into 52 scenes, where each of them
contains 0 to 3 events. As a result, a total of 60 event occur-
rences (i.e. 10 per event) has been captured by our dataset,
and their time interval ground truths are provided.

5.2. Evaluation

We measured the event annotation accuracies of our sys-
tem using a leave-one-out cross validation setting, similar to
[5]: Among 60 event occurrences in our dataset, we select
one event occurrence as test data and use the other 59 event
occurrences as positive/negative training examples. This
testing process is repeated for the 60 rounds, and the sys-
tem performances have been averaged for these 60 rounds
to provide the overall event annotation accuracy. In addi-
tion, a separate set of labeled pedestrian images and vehicle
images were used for training the detection component.

For each round, the event analysis component takes ad-
vantage of the given training examples to learn the spatio-
temporal decision tree classifiers. In order to test the incre-
mental property of our learning, the training videos have
been provided to the system sequentially. We measured
whether the annotation was correct for the testing event oc-
currence, while counting the number of false positive anno-
tations. In our experiment, an event annotation is said to be
correct if and only if the overlap between the detected time
interval and the ground truth interval overlaps more than

Figure 6. Video retrieval interface of our diary.

Table 1. Event annotation accuracies of the system.

Events Accuracy False positives
Long stopping 1.0 0.00
Overtake 0.9 0.00
Overtaken 0.9 0.00
Sudden acceleration 0.9 0.01
Sudden stop - pedestrian 0.8 0.02
Sudden stop - vehicle 1.0 0.01
Total 0.917 0.04

50%. Otherwise, it is treated as a false positive.

Table 1 shows the event detection accuracies of our
system. ‘Accuracy’ describes the ratio of correctly anno-
tated driving events among the testing events. ‘False posi-
tives’ shows the average number of false annotations gen-
erated per minute. We are able to observe that our system
successfully annotates ongoing events in continuous video
streams, reliably constructing appropriate personal driving
diaries. In Figure 6, our system interface describing re-
trieved videos, locations of the vehicle on the map, and
pedestrian/vehicle trajectories are illustrated. In addition,
example videos of important driving events annotated using
our system is shown in Figure 7.

6. Conclusion

We introduced the concept of personal driving diary.
We proposed a system that automatically constructs event-
based annotations of driving videos, enabling efficient
browsing and retrieval of users’ driving experiences. The
experimental results confirmed that our system reliably gen-
erates a multimedia achieve of driving events. Our driv-
ing diary enabled statistical analysis of users’ driving habits
based on vehicle events, and provided videos of important
driving events, global locations of the vehicle, and trajec-
tory histories of interacting pedestrians/vehicles.
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(b) A vehlcle sudden stop event caused by another vehlcle in the front
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(d)A sequence of two vehicle overtaken event - two other vehicles are overtaking the driving vehicle

Figure 7. Example video sequences of annotated driving events. First-person view videos of various driving events are shown.

References

(1]
(2]
(3]

(4]

(5]

(6]

(7]

(8]

J. F. Allen. Maintaining knowledge about temporal intervals.
Communications of the ACM, 26(11):832-843, 1983.

S. Choi and W. Yu. Robust video stabilization to outlier mo-
tion using adaptive RANSAC. In /ROS, 2009.

N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, 2005.

A. R. Doherty, C. O. Conaire, M. Blighe, A. F. Smeaton, and
N. E. O’Connor. Combining image descriptors to effectively
retrieve events from visual lifelogs. In ACM MIR, 2008.

P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behav-
ior recognition via sparse spatio-temporal features. In /[EEE
Workshop on VS-PETS, 2005.

T. Gandhi and M. M. Trivedi. Pedestrian protection systems:
Issues, survey, and challenges. IEEE T ITS, Sept 2007.

J. Gemmell, L. Williams, K. Wood, R. Lueder, and G. Bell.
Passive capture and ensuing issues for a personal lifetime
store. In ACM CARPE, in conjunction with ACM MM, 2004.
T. Hori and K. Aizawa. Context-based video retrieval system
for the life-log applications. In ACM MIR, 2003.

(9]

(10]

(11]

(12]

[13]

[14]

(15]

[16]

D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In
CVPR, 2004.

M. S. Ryoo and J. K. Aggarwal. Spatio-temporal relation-
ship match: Video structure comparison for recognition of
complex human activities. In /CCV, 2009.

C. Schuldt, I. Laptev, and B. Caputo. Recognizing human
actions: a local SVM approach. In /CPR, 2004.

A. J. Sellen and S. Whittaker. Beyond total capture: A
constructive critique of lifelogging. Communications of the
ACM, 53(5):70-77, May 2010.

US Patent 20040201697A1. “Black-box” video or still
recorder for commercial and consumer vehicles, 2004.

N. C. Utgoff, P. E. abd Berkman and J. A. Clouse. Decision
tree induction based on efficient tree restructuring. Machine
Learning, 29:5-44, 1997.

P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR, 2001.

B. Wu and R. Nevatia. Tracking of multiple, partially oc-
cluded humans based on static body part detection. In CVPR,
2006.



