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Abstract—We present a methodology for learning novel hu-
man activities incrementally. In many real-world scenarios (e.g.
YouTube), new videos of novel activities are provided additively,
and the system must incrementally adjust its activity models
rather than retraining the entire system after each addition. We
introduce our incremental codebook learning algorithm for an
efficient mining of important visual words for human activities,
and propose a method that incrementally trains activity models
using them. The experimental results show that our approach
successfully learns human activities from increasing number of
training videos, while maintaining its recognition performance
comparable to previous non-incremental systems.

I. INTRODUCTION

An automated analysis of events and activities from video
data is an important problem with a large amount of public
interests. Particularly, a system to learn and recognize events
from online videos (e.g. YouTube) is obtaining an increasing
amount of attentions from researchers. More than 20 hours of
web-videos are being uploaded to these websites per minute
nowadays, and the activity recognition paradigm is shifting
to process and utilize these abundant videos dynamically
uploaded by users. In contrast to traditional systems trained
with a limited amount of videos offline, today’s systems are
required to incrementally update themselves and learn new
activity categories from an increasing number of videos. Tons
of user-created contents (UCCs) of novel categories are being
uploaded, and the goal is to analyze and utilize them.

In this paper, we present an efficient incremental concept
learning methodology for recognizing human activities from
videos. The motivation is to construct an activity recognition
system which efficiently adjusts itself as a new video sample
is provided, instead of retraining the entire system after every
video addition. The proposed methodology not only updates
models for existing activity classes incrementally, but also
learns an entirely new activity class as its videos are given to
the system sequentially (Figure 1). Such method is especially
important for interactive recognition systems whose categories
increase corresponding to user demands (e.g. UCC searching),
and for large-scale systems that require a significant amount
of computational space and time to retrain them (e.g. systems
learning from YouTube videos). Even though previous activity
recognition systems [1], [2], [3], [4] have shown successful
results, they were not designed for the incremental learning;
they had no choice but to retrain them again as the number
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Fig. 1. An illustration of our incremental activity learning process.

of available videos and their event categories (e.g. greeting,
fighting, stealing, ...) are increasing.

Our approach is to represent an activity in terms of visual
words (i.e. clusters of features) describing its videos, and to
incrementally learn new words for existing/novel activities as
training examples are provided. Each ‘word’ corresponds to a
set of local spatio-temporal features with similar appearances,
and the activity is learned by modeling the distribution of
these words in its videos. We present an algorithm to learn an
optimal set of words (i.e. codebook) per class incrementally.
New visual words are generated as videos from an existing or
novel activity class is provided, while old words are updated
or merged based on the new observations. Furthermore, our
algorithm is designed to share a portion of words across classes
when constructing activity codebooks, enabling efficient learn-
ing of novel activity categories. A histogram of visual words
required for the recognition are constructed for each activity
class in an incremental fashion as well; the histogram is
constructed or updated after each video addition sequentially,
while maintaining characteristics of the previous distribution.
As a result, our human activity classifiers using the histograms
are constructed and updated incrementally.



II. RELATED WORKS

Incremental learning. Even though incremental learning of
human activities from videos has not been explored in depth,
several computer vision researchers have attempted to learn
novel objects from images incrementally. Bart and Ullman [5]
was able to learn a new object category from a single image
by taking advantage of features learned for existing object
categories. Torralba et al. [6] did not focus on incremental
learning, but they have proposed an idea of sharing features for
multi-class object learning that potentially benefits incremental
object learning. Opelt et al. [7] designed an object detection
system using boosting. A detector has been constructed per
object, learning weak classifiers using edge features incremen-
tally.

Activity recognition. Since early 1990s, many researchers
have studied human activity recognition [8]. Hidden Markov
models and other sequential models have been popularly used
for the recognition of action-level activities [9], [10], [11],
while hierarchical approaches have been developed for recog-
nizing high-level activities (e.g. complex human-human inter-
actions) [12], [13], [14], [15]. Most of these approaches take
advantage of image features extracted per frame, modeling
activities as a sequence of feature observations. However, such
features often require good foreground segmentation method,
preventing the activity recognition methodologies from being
applied to videos with moving backgrounds, changing illumi-
nations, and/or camera movements (e.g. UCC videos).

Recently, action recognition approaches using 3-D spatio-
temporal local features have gained a wide range of interests,
because of their reliability under noise, illumination changes,
and camera movements. Schuldt ez al. [1] presented a method-
ology to extract sparse local features from 3-D XYT volume
constructed by concatenating images along time axis. Simi-
larly, Dollar et al. [2] have introduced ‘cuboid’ feature descrip-
tors modeling appearance changes in local spatio-temporal
regions. A statistical pLSA model for an unsupervised learning
of one-person actions was adopted in [3]. In order to recog-
nize multi-person complex activities, Ryoo and Aggarwal [4]
developed the spatio-temporal relationship match that models
structural distributions of 3-D XYT features.

However, these systems were unable to learn activities
from increasing number of videos. The previous approaches
require retraining of the entire system as one video example is
added to the system. In many real-world applications, a video
example with important information may be added later than
the others, and it was difficult for the previous approaches
to update the systems corresponding to the new information.
Furthermore, they must maintain all features from training
examples in order to do so. It was not possible for them to
learn novel activity classes incrementally.

Reddy et al. [16] modeled feature codebooks in a incre-
mental fashion for human activity recognition. They have
shown the idea that codebooks can be learned sequentially,
but their system was unable to learn novel class. Zuniga et al.
[17] attempted to learn new human activities by incrementally

Example
visual words
from a hand-
shake video

Fig. 2. Example 3-D spatio-temporal (XYT) features extracted from a video.
Each feature describes an appearance of a local XYT volume corresponding
to it. The features are categorized into several types (colors) based on the
codebook.

adding scene states. However, they represented an action as
a transition between two states, and was difficult to learn
complex activities which cannot be described with simple two-
state sequential models.

III. CODEBOOK LEARNING
A. Visual Words
We define a visual word of activity videos as follows.

Definition 1: A visual word is a d-dimensional sphere that
satisfies the following two constraints:
1) Its feature density is greater than the given threshold.
@ >c
rd
where F' is a set of d-dimensional member feature
vectors included by the sphere, r is the radius of the
sphere, and c is the threshold.
2) It does not overlap with any other visual words.

We say that any feature vector within the sphere is a member
of the word. That is, a visual word is modeled as a particular
region in a feature hyperspace which includes more than c- ¢
features, regardless where the features have originated.

Each visual word groups a set of features with similar
values, dividing entire features into several feature appearance
categories as a result. If 3-D spatio-temporal local features
(e.g. [1], [2]) are used, similarly shaped spatio-temporal XYT
regions of videos are grouped to correspond to a single word.
These visual words enable the system to represent each video
as a set of words appearing in the video (e.g. Figure 2).
Note that our definition of visual words are different from
conventional bag-of-words definitions used in previous works
[1], [2], [3]: Our sphere definition better describes discrete and
dense nature of XYT appearance-based local features, since
we do not force the visual words to occupy the entire feature
hyperspace.

A set of all visual words forms a codebook (i.e. a visual
word dictionary) for features, and the goal of our algorithm is
to learn an optimum codebook correctly reflecting feature dis-
tributions. Diverse feature vectors are observed from training
videos of various activities, which are provided incrementally.
The activity recognition system is required to learn the opti-
mum m number of visual words (i.e. a codebook with size m)
incrementally so that each feature vector observed is covered
by one among them.
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Fig. 3. The merging process for finding the largest super word continues

Iteration 5 Result:

Iteration 4

until the density constraint is violated for the first time. Among super words

constructed during the process, the largest one whose boundary does not overlap with any other existing words (e.g. iteration 3) is selected.

B. Incremental Codebook Learning

In this subsection, we present an efficient codebook learning
algorithm which has an incremental property.

Definition 2: We say that a codebook learning algorithm
has an incremental property, if and only if
(t—1) (t—1)
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where wl(t*l) is the 7th word of a codebook generated after
observing (¢t — 1) features, and wj is the jth word of a

codebook after observing an additional feature (i.e. ¢ features).
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The incremental property of a codebook learning algorithm
guarantees that member features of a learned visual word
always stay together once it is formulated. That is, feature
vectors assigned to an identical word do not split into two
different words even if the codebook is updated by observing
multiple features afterwards. In contrast to previous codebook
learning using clustering algorithms such as k-means, an
incremental algorithm is able to learn increasing number of
visual words in a natural way without modifying (i.e. re-
making) its previous codebook update decisions. This enables
additive learning of visual words without storing all previously
observed features; our system only maintains {centroid, radius,
and feature count} of each visual word so that it represents
all member features in it.

We propose an incremental codebook learning algorithm
with a greedy optimization strategy. Our algorithm is an
iterative algorithm that updates the codebook as a new feature
is added. At every iteration, our algorithm minimizes the
number of words, m, while making all observed features to
be covered by the m words. When a new feature from a new
training video is added to the system, our algorithm either
creates a new word that only contains the new feature or finds
the largest super word that includes the feature.

Definition 3: A word w, is the largest super word of a
word w,,, if and only if (i) w, satisfies the definition of a
visual word and (ii) w, encloses the maximum number of
words while including w,,.

The largest super word can be formulated by merging all
nearby words while keeping the two constraints in Definition
1. Our algorithm first creates a singleton word with zero radius
based on the new feature, and then searches for the largest

// Feature fis the feature being added to the system
UPDATE_CODEBOOK(Feature f)
{
Word w,,,, = LARGEST_SUPER_WORD(makeword(f));
update the codebook to include w,,,,;

b

LARGEST_SUPER_WORD(Word w,)
{
if (density(w,) < c) return null;
else
{
Word w, = the nearest word of w,;
Word w, = LARGEST_SUPER_WORD(merge(w,, w,));

if (wg!=null) return w,;
else if(overlaps(w,, w,)) return null;
else return w,;
}
}

Fig. 4. Our greedy algorithm to update the codebook by searching the largest
super word recursively.

super word by recursively merging it with the nearest word
until the density constraint is violated. Figure 3 illustrates the
process of our algorithm. Finding the largest super word of a
feature enables the system to minimize the number of words
by merging the feature with nearby words as much as possible.
Among multiple largest super words with an identical m, our
algorithm selects the one with the highest density. Figure 4
shows the pseudo code of our algorithm.

Furthermore, we present an algorithm to efficiently select
important visual words for the construction of class-specific
codebooks. Using all visual words as a common codebook
is often computationally inefficient for activity recognition,
and we develop an algorithm to select the k& most frequent
words (i.e. representative words) for each activity class. While
learning visual words of the activities, our algorithm maintains
a ‘rank list’ of words in an incremental fashion for each



activity class. This rank list is a sorted list describing the total
number of occurrences of the words in training videos of each
activity. Our rank list is updated after each feature observation,
adding a new entry (i.e. new word) or making one of its entry
have a higher rank while removing another entry (i.e. merge).
If a video from a new class is provided, a new rank list is
constructed. Our idea of separately maintaining visual words
and rank lists enables sharing of important features among
activity classes, while correctly reflecting word distributions
per activity.

The time complexity of our algorithm is O(mn) where n is
an average number of features per video. These computations
are required for each incremental video addition. On the other
hand, a traditional codebook learning paradigm using k-means
requires O(lknv) computations per video addition, where [
is the number of iteration needed for k-means to converge
and v is the number of videos. In general, O(mn) ~ O(kn),
suggesting that our incremental codebook learning is far more
efficient than the traditional clustering.

As a result of our codebook learning algorithm, we obtain &
best visual words (i.e. a specialized codebook) for each activity
class that has been observed incrementally.

IV. ACTIVITY RECOGNITION

In this section, we present our incremental activity learning
methodology that takes advantage of incremental codebooks
generated from Section III. Our algorithm presented in the pre-
vious section updates feature codebooks of activities as videos
are provided. In the traditional activity learning paradigm,
activity learning must be re-done if codebook entries are
modified (e.g. word merging). What we discuss in this section
is a learning algorithm that overcomes such limitations; our
algorithm incrementally updates the activity models as videos
from existing classes are provided and codebook entires are
modified, rather than retraining the entire system. Furthermore,
our approach learns models for novel activity classes additively
as new videos from unseen classes are provided.

We focus on the incremental property (Definition 2) of
our system. We represent each activity as a mean histogram
of words. That is, we maintain an array where each entry
describes an average number of the corresponding word’s oc-
currences in entire activity videos. The sizes and entry values
of these histograms change as visual words are being added
and merged based on new observations (i.e. training videos).
Our system incrementally updates the histogram values so that
the average occurrence count of a merged word (i.e. a new
word) is computed based on the words being merged (i.e.
existing words).

More specifically, we take advantage of the rank lists
from Subsection III-B to construct the average histogram
per class. A rank list maintains the total number of each
word appeared in training videos of each activity class in
an incremental fashion, and dividing it by the number of
observed training videos provides us the average histogram.
This histogram representation enables efficient addition of
novel activity classes as well, since our approach automatically

constructs a new rank list as a new class is added. For more
efficient construction of histograms, we only consider the
visual words whose ranking is better than k£ in at least one
activity class.

We design a Bayesian classifier with a Gaussian assumption
to recognize represented human activities. Each activity is
modeled as a Gaussian distribution having a particular mean
(i.e. a mean histogram of words) and variance. The variance is
computed similarly to the mean histogram by using the rank
lists. With a Gaussian assumption, the class with the maximum
posterior probability of generating the given video is selected
as the label of the activity:

P(AIh)  P(h|A) - P(4) = N(u,0%) - P(4) (1)

where h is the histogram of a testing video, A is the class
of the activity, and (u,0?) is a pair of mean histogram and
variance histogram of the activity A. We assume a uniform
prior probability.

Our activity learning algorithm only requires O(kn) compu-
tations to construct/update the activity models using the rank
lists. On the other hand, previous activity learning algorithm
(i.e. non-incremental) with bag-of-words paradigm requires at
least O(knv) computations for video addition. v, the number
of observed videos, can be several millions in Internet datasets.

V. EXPERIMENTS

In order to evaluate our approach, we have implemented two
types of activity recognition systems following our incremental
class learning approach. One system uses cuboid features by
Dollar et al. [2], and the other system uses Laptev’s spatio-
temporal features [18]. These two incremental systems were
compared with several existing non-incremental methodolo-
gies using the same features: k-nearest neighbors (e.g. [2]),
support vector machines (similar to [1]), and the Bayesian
classifier similar to our algorithm presented in Section IV have
been implemented.

We have used the UT-interaction dataset from the SDHA
2010 human activity recognition contest [19]. Videos in this
public dataset contain complex interactions between multiple
persons such as hand shaking and pushing (Figure 5). Several
pedestrians are present in the scene and background/lighting
conditions are changing in the videos, making the recognition
problem challenging. We have used the segmented version
of the UT-Interaction dataset #1 to measure the classification
accuracy. This dataset is composed of 10 sets containing a total
of 60 videos. The leave-one-set-out cross validation setting
(i.e. 10-fold cross validation) was used, measuring the aver-
age classification performance. Our system was incrementally
trained by providing videos sequentially (i.e. update one-by-
one), in contrast to previous approaches trained with the entire
videos at once.

Table I shows classification accuracies of our system com-
pared to others. We are able to observed that our incrementally
trained system performs comparable to other non-incremental
systems. Even though the other results are based on full
offline training (i.e. classifiers were learned with the entire



Fig. 5.

Example snapshots of the dataset used.

TABLE I
ACTIVITY CLASSIFICATION ACCURACIES OF THE SYSTEMS TESTED ON
THE UT-INTERACTION #1 DATASET [19].

Incremental Performances
System .
learning [2]’s feature [17)’s feature

Random chance 16.7% 16.7%
k-NN X 63.0% 57.0%
Bayesian X 66.7% 58.2%
SVM X 75.5% 64.2%
Ours O 65.0% 55.0%

training set) which is not possible for increasing videos,
the results of our incremental system were as good as the
other offline systems. Particularly, our system’s performances
were almost identical to those of the offline version of our
method (i.e. the Bayesian classifier). This result confirms that
our approach efficiently learns novel activity categories from
increasing number of videos. That is, our approach achieves
similar activity classification accuracies without spending a
large amount of computations to retrain the entire system.

VI. CONCLUSIONS

We have introduced a methodology for an incremental
learning of novel human activity classes. An incremental code-
book learning algorithm for efficient selection of visual words
from increasing number of videos has been proposed, and an
activity learning and recognition algorithm to take advantage
of such codebook was presented. In contrast to previous
non-incremental methodologies that need to retrain the entire
system to update new training videos of existing/novel activity
classes, our algorithm incrementally learns activity models as
videos are provided. Our experimental results confirm that the
performance of the proposed system is comparable to other
non-incremental systems using same features.

VII. FUTURE WORKS

In the future, we plan to explore various visual word repre-
sentations to learning codebooks. Currently, each visual word
is represented as a multi-dimensional sphere in the feature
hyperspace. That is, there is only one parameter describing
each word: the radius. We plan to apply more flexible represen-
tations such as multi-dimensional ellipsoids for visual words,

more accurately modeling non-spherical feature clusters to
increase the system performances. In addition, our incremental
activity learning paradigm will be extended to cope with other
types of classifiers (e.g. boosting).
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