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Abstract

Persons may perform an activity in many differ-
ent styles, or noise may cause an identical activity to
have different temporal structures. We present a ro-
bust methodology for recognition of such human activ-
ities. The recognition approach presented in this pa-
per is able to handle person-dependent and situation-
dependent uncertainties and variations of human activ-
ity executions. Our system reliably recognizes human
activities with such execution variations, by semanti-
cally measuring the similarity between the observations
generated by an activity execution and its optimal struc-
ture. The system detects fuzzy time intervals associ-
ated with low-level gestures of a person, and matches
them hierarchically with the representation of the activ-
ity that the system is maintaining. Our system is tested
for eight types of simple human interactions such as
‘pushing’ and ‘shaking hands’, as well as complex re-
cursive interactions like ‘fighting’ and ‘greeting’. The
results show that the performance of our system is supe-
rior to that of the previous systems using deterministic
time intervals.

1 Introduction

Human activity recognition is an important and ac-
tive research area in the field of computer vision. Au-
tomated recognition of gestures or simple single-person
actions such as walking and sitting has been particu-
larly successful [14, 2, 5, 12, 7]. Recently, recognition
of high-level and complex activities (e.g. fighting and
stealing) is gaining increasing amount of interest, be-
cause of its applications in other surveillance systems,
sports play analyses, and human-computer interaction
systems.

Description-based approaches are a particular class
of hierarchical recognition methodologies designed for
analysis of high-level activities [9, 13, 3, 10, 11]. The

motivation behind description-based approaches is to
recognize human activities by maintaining the activi-
ties’ temporal structure. Using time intervals and tem-
poral predicates [1] to represent the structure of each
activity, previous approaches have obtained success-
ful results on recognizing high-level human activities,
by searching for visual inputs that satisfies the activi-
ties’ structure. Description-based approaches are able
to overcome the limitations of previous statistical and
syntactic approaches [4, 6] on recognizing concurrently
organized activities.

However, even though the above description-based
approaches have been successful in recognizing high-
level activities, they had limitations on handling struc-
tural uncertainties and variations in activity executions.
Actual executions of an activity are person-dependent
and situation-dependent, and their temporal structures
may vary. For example, even though two persons must
exchange multiple punching or kicking consecutively
(right after another) in ideal cases of ‘fighting’, tempo-
ral gaps between punchings always exist and their dura-
tions may vary. Most of the previous description-based
systems recognized activities only when their temporal
relationships (i.e. temporal structure) are strictly satis-
fied, ignoring the variations.

We present a reliable human activity recognition
methodology which handles the structural variations of
an activity. When a new observation (i.e. video) con-
taining an execution of an activity is provided, our sys-
tem measures how semantically similar a given obser-
vation is to the optimal structure of the activity. This
similarity measure is not deterministic but is designed
to consider uncertainties of the activities’ structures.

Overall process of the system is as follows. At each
occurrence of gestures, we associate a fuzzy [15, 16]
time interval. In contrast to a deterministic time in-
terval used by previous approaches [13, 3, 10, 11], a
fuzzy interval is able to describe a possible range of
its starting time and that of its ending time as well as
the confidence value associated with time frames within



the ranges. Once fuzzy intervals are calculated, a dy-
namic programming algorithm that we have designed
and presented here is applied to measure the similarity
between the detected fuzzy intervals and the structure
of the activity specified in the representation. Our algo-
rithm searches for the time points in ranges that satisfy
the temporal structure specified in the activity represen-
tation while maximizing the fuzzy membership values.
A logistic regression technique has been used to esti-
mate the similarity function.

We first present a general overview of description-
based human activity recognition approaches in Section
2. In Section 3, we introduce the concept of fuzzy time
intervals. Our algorithm to recognize activities under
variations is presented in Section 4. Section 5 shows our
experimental results on recognition of human-human
interactions, and Section 6 concludes the paper.

2 Description-based activity recognition

A description-based activity recognition approach is
an approach that uses a representation of a human ac-
tivity describing its temporal, spatial, and logical struc-
ture to recognize the activity. The representation can be
viewed as a definition of the activity. Only when time
intervals associated with sub-events show similar struc-
ture to the definition of the activity, the system should
deduce that the activity occurred. For example, in the
case of ‘pushing’ interactions between two persons, hu-
mans consciously or unconsciously know that one has
to ‘stretch his/her arm’ and the other has to ‘fall back’ as
a consequence. We are also aware that the person push-
ing has to ‘touch’ the other while pushing is happen-
ing. By making the system to maintain such descriptive
knowledge on ‘pushing’ and to search for observations
that satisfy it, the system is able to recognize the activ-
ity.

We adopt the activity representation syntax devel-
oped in [10] to describe the structure of an activity for-
mally. Figure 1 (a) shows an example representation of
the activity ‘push’, describing the temporal relationship
among time intervals associated with the sub-events.
What we present throughout the paper is a new ro-
bust activity recognition methodology, which matches
observations with representations while handling struc-
tural variations of activities. In order for the recognition
system to be reliable and flexible, even when an obser-
vation is not strictly identical to the representation (e.g.
Figure 1 (b)), the system must match it with the repre-
sentation and measure how similar it is, as illustrated in
Figure 1.

this=Push_interactions(p1,p2)

Touching(p1, p2) 

i=Stretch(p1’s arm) j=Stay_Stretched(p1’s arm)

l =Depart(p2, p1)k =Touching(p1, p2) 

Representation

Observation

Match!
Stretch(p1’s arm) Stay_Stretched(p1’s arm)

Depart(p2, p1)

(a)

(b)

Figure 1. An example matching of ‘push’.
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Figure 2. Example fuzzy intervals.

3 Fuzzy time intervals

In this section, we introduce the concept of ‘fuzzy
time intervals’, which is designed to capture uncertain-
ties and variations in activity executions. A time inter-
val is a pair of starting time and ending time, which de-
scribes the time associated with an occurring activity or
sub-event. Previously, most of approaches have used
deterministic time intervals with strictly fixed start-
ing and ending time to describe detected sub-events,
and analyzed their relationships to recognize activities
[13, 3, 10, 11]. Our system associates ‘fuzzy intervals’
for detected actions; we adopt the concept of fuzzy sets,
and describes each starting time or ending time of ac-
tions as a fuzzy range of time rather than a time point.
Each frame (i.e. discrete time points) within the range
will have corresponding fuzzy set function value de-
scribing how confident the system is on the fuzzy inter-
val. Fuzzy intervals are not only associated with atomic
actions, but also associated with high-level actions and
interactions for the hierarchical recognition.

Figure 2 shows example fuzzy intervals and possi-
ble time intervals described by fuzzy intervals. Figure
2 (a) shows an example of two fuzzy intervals whose
ranges overlap slightly. Figure 2 (b) illustrates exam-
ples of possible time intervals extracted from the fuzzy
intervals, which are selected to satisfy the temporal re-
lationship meets. A starting or ending point of each
time interval has an associated fuzzy set value describ-
ing how confident the system is on the time interval.

Figure 2 clearly illustrates why fuzzy time intervals
are more desirable than traditional deterministic inter-



vals on handling variations of an activity. Assume
that a structure of an activity is described as time in-
tervals of two sub-events occurring in a sequence (i.e.
meets). When two overlapped intervals shown in Fig-
ure 2 (a) are detected (instead of sequential ones) due
to an execution variation, systems using the determinis-
tic time intervals whose starting times and ending times
are fixed to local maximums fail to recognize the activ-
ity. On the other hand, as illustrated in Figure 2 (b), the
fuzzy intervals contain time intervals that meets with a
certain confidence, thereby enabling the recognition.

A fuzzy interval describes a set of possible time in-
tervals. Among sets of possible time intervals described
by fuzzy intervals of sub-events, there may exist partic-
ular choices that make the temporal constraints of an
activity to be satisfied, as seen from Figure 2 (b). The
goal is to make the system search for such selections
while maximizing fuzzy values associated with inter-
vals, so that the overall similarity using fuzzy intervals
can be measured. We present the detailed algorithm to
measure such similarity in the following section.

In principle, our recognition methodology is able to
cope with any function as a fuzzy membership function
associated with starting or ending point of a time inter-
val. We have chosen a triangular function that is com-
monly used in fuzzy logic to be the fuzzy function of
starting or ending point of an atomic-level action. Based
on the training data, a variance of a starting or ending
time of each atomic actions has been measured, and the
height and the width of the triangle function have been
empirically decided. The fuzzy function of higher-level
activities are calculated hierarchically, as a consequence
of the recognition process.

4 Recognition algorithm

In this section, we present an algorithm to recog-
nize human activities using fuzzy intervals. We first
present a methodology to recognize activities by mea-
suring similarities between its structure and observa-
tions (i.e. detected fuzzy intervals of sub-events). A
hierarchical similarity measurement is presented next.

The problem of recognizing an activity based on de-
tection results of sub-events can be formulated as fol-
lows: Given fuzzy intervals associated with each sub-
event, the goal is to search for a valid combination of
time intervals within the ranges of fuzzy intervals that
maximize the fuzzy values (i.e. confidence) while sat-
isfying the temporal constraints of the activity. If the
assigned fuzzy values are high enough, the system is
able to deduce that given fuzzy intervals are similar to
the activity’s structure and conclude that the activity oc-
curred. In order to integrate fuzzy values associated

i j

k l

meets(i,j)

overlaps(i,k) meets(k,l)

[14, 23]

[8, 17] [17, 29]

[1, 14]

Figure 3. An example temporal graph.

with sub-events to calculate the overall confidence of
the occurring activity formally, we have used a logistic
regression technique. Confidence of the activity is com-
puted as a weighted sum of starting and ending times’
fuzzy values fitted into the logistic function.

Let (v1, ..., vn) be time intervals within the ranges of
fuzzy intervals of n sub-events, and (x1, ..., xn) be their
fuzzy membership values. Then, overall fuzzy confi-
dence of the activity, L, is measured as

L = max(L(x1, ..., xn)) = logit−1(max(F (x1, ..., xn)))

(1)

where

F (x1, ..., xn) = b + a1 · (xs
1 + xe

1) + ... + an · (xs
n + xe

n)
(2)

where xs
k indicates the fuzzy value of the starting time

of vk and xe
k indicates that of ending time. The func-

tion logit is defined as logit(p) = ln(p/(1 − p)), and
a1, ..., an and b are constant weight values which need
to be trained.

The system is required to maximize the
F (x1, ..., xn) function while meeting temporal
constraints posed for (v1, ..., vn). There exist various
temporal constraints that the time intervals have to
satisfy depending on the representation of the activity.
Most trivial constraint is that the starting time of a sub-
event can not exceed its ending time. Representation
of the activity also specifies other constraints using
temporal predicates. For example, if the representation
contains before(v1, v2), then the ending time of v1

must be strictly less than the starting time of v2.
Choosing time point 9 for ve

1 and 5 for vs
2 leads to a

contradiction, regardless their fuzzy values.
In order to compute max(F (x1, ..., xn)) while satis-

fying the constraints, we have developed a dynamic pro-
gramming algorithm. We first convert temporal repre-
sentation of an activity into an undirected acyclic graph
representation (i.e. tree) where each node corresponds
to a time interval and each edge specifies that two in-
tervals are required to satisfy a particular relationship.
An edge is labeled with the relationship that needs to be
satisfied between the two nodes (e.g. during(v1, v2)).
Multiple graphs may be constructed from disjunctive
normal form (DNF) of the representation. Figure 3



shows an example temporal graph of the interaction
‘push’ mentioned in Figure 1.

We formulate the recursive equation as:

Gk(t) = ak · (xs
k + xe

k) +
∑

all vc

max{t′}Gc(t
′) (3)

where vc are child nodes of vk, and t′ are time inter-
vals that satisfies temporal relations with the interval t.
Gk(t) specifies the maximum weighted sum of possi-
ble assignments for xk and its descendant nodes, if the
interval t is assigned for xk. Therefore, the similarity
measure L(x1, x2, ..., xn) are enumerated as follows:

max(L(x1, ..., xn)) = logit−1(max(F (x1, ..., xn)))

= logit−1(max{t}Gr(t))
(4)

where node vr is the root node of the tree.
As a result, by solving the recursive equation us-

ing the dynamic programming algorithm, we are able
to calculate the maximum L, which is the confidence
of the detection. Furthermore, we are able to calculate
the fuzzy interval associated with the detection. By cal-
culating the argument maximum while computing the
maximum, we also are able to compute the exact time
intervals of sub-events that make the fuzzy value of the
activity to be the maximum. This implies that the sys-
tem is able to calculate the starting time and ending time
of the special time interval ‘this’, which is always as-
sociated with the defining activity itself. Ranges are
associated with the detected starting and ending time
of ‘this’, making the interval to be fuzzy. The overall
complexity of the algorithm is O(m2), where m is the
average number of intervals within ranges per node.

We have developed a hierarchical algorithm which
analyzes human activities from bottom (i.e. atomic-
level actions) to top (i.e. high-level interactions). At
the bottom level, the system detects atomic-level actions
(e.g. arm stretching) using low-level recognition tech-
niques such as hidden Markov models (HMMs) from
Park and Aggarwal [8], and associates fuzzy intervals
to describe their starting and ending time. Higher-level
activities are recognized based on fuzzy intervals asso-
ciated with their sub-events, which are atomic-level ac-
tions and/or other activities composed of their own sub-
events. With the fuzzy interval calculation method pre-
sented above in this section, fuzzy intervals of an activ-
ity are computed based on those of sub-events, enabling
the recognition of high-level activities.

5 Experiments

We have evaluated the performance of our system
using fuzzy time intervals, while comparing it with the

t = 20t = 9 t = 30t = 12 t = 25

t = 40 t = 45 t = 50 t = 58 t = 65

Representation:
Fighting (person1, person2)

Punching (p1, p2) Punching (p2, p1) Punching (p1, p2)

Wd (p2)St (p2)

Withdraw (p1)

Observation:

Stretch (p1) Stretch (p2) Withdraw (p1)Withdraw (p2) Stretch (p1)

St (p1) Wd (p1) Wd (p1)St (p1)
Match

12 16 22 32 37 43 55 58 6348

Figure 4. Example experimental results
of the recursive activity ‘fighting’, com-
posed of three consecutive ‘punching’ in-
teractions.

previous systems [10, 11] using deterministic intervals.
Eight types of relatively simple interactions between
humans (approach, depart, point, shake-hands, hug,
punch, kick, and push), as well as complex recursive
interactions of fighting and greeting have been tested by
the systems. We have used the dataset used in [10, 11],
which contains sequences of continuous executions of
activities in 320*240 resolutions at 15 fps. Complex
fighting-related sequences containing a total of 53 sim-
ple and recursive activities have been newly added. As a
result, a total of 161 activity executions have been tested
for both systems. HMMs for gesture recognition and lo-
gistic regression weights, a1, · · · , an and b, have been
estimated based on a separate training set.

The experimental results clearly illustrate that the
recognition accuracy of our system is better than that
of the previous system. Table 1 compares true positive
rates obtained from two systems whose false positive
rates are similar. The result confirms that the use of
fuzzy time intervals helps reliable recognition of activ-
ities from noisy videos with structural execution varia-
tions. Figure 4 shows a successful recognition result of
our system tested on a fighting interaction composed of
three punching interactions, which the previous deter-
ministic systems failed recognition due to its structural
variation. Figure 5 shows a recognition result of push-
ing. Even though the structure of the gesture recogni-
tion results was slightly different from the representa-



System Simple Recursive Total

Ours 0.920 0.783 0.907
Previous 0.862 0.522 0.814

Table 1. Recognition accuracy.

t = 77t = 73 t = 80t = 75 t = 78

t = 84 t = 87 t = 88 t = 89 t = 90

Representation:
Push_interactions(person1, person2)

Depart(p2, p1)

Stretch(p1’s arm)
Observation:

Match
73 77

Depart(p2, p1)

Stretch(p1’s arm) Stay_Stretched(p1’s arm)

Touching(p1, p2) 

Stay_Stretched(p1’s arm) 84

78 Touching(p1, p2) 8382 90

Figure 5. Example experimental results of
the ‘pushing’ interaction.

tion, our system was able to recognize the pushing in-
teraction. False positive rates were almost 0 for both
systems, since the probability of sub-events satisfying
particular relations detected ‘by accident’ is extremely
low.

6 Conclusion

We have presented a reliable recognition methodol-
ogy that is able to handle uncertainties in human ac-
tivities’ structure. We have introduced the concept of
‘fuzzy time intervals’, and presented the dynamic pro-
gramming algorithm to calculate the similarity between
the activity and the observations. Experimental results
suggest that the ability to handle structural variations
enables better recognition of human activities.
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