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Abstract

Human activity recognition is a challenging task, es-
pecially when its background is unknown or changing,
and when scale or illumination differs in each video.
Approaches utilizing spatio-temporal local features have
proved that they are able to cope with such difficulties, but
they mainly focused on classifying short videos of simple
periodic actions. In this paper, we present a new activity
recognition methodology that overcomes the limitations of
the previous approaches using local features.

We introduce a novel matching, spatio-temporal relation-
ship match, which is designed to measure structural similar-
ity between sets of features extracted from two videos. Our
match hierarchically considers spatio-temporal relation-
ships among feature points, thereby enabling detection and
localization of complex non-periodic activities. In contrast
to previous approaches to ‘classify’ videos, our approach
is designed to ‘detect and localize’ all occurring activities
from continuous videos where multiple actors and pedestri-
ans are present. We implement and test our methodology
on a newly-introduced dataset containing videos of multi-
ple interacting persons and individual pedestrians. The re-
sults confirm that our system is able to recognize complex
non-periodic activities (e.g. ‘push’ and ‘hug’) from sets of
spatio-temporal features even when multiple activities are
present in the scene.

1. Introduction

Human activity recognition, an automated detection of
ongoing activities from video data, is an important prob-
lem. Semantic analysis of activity videos enables construc-
tion of various vision-based intelligent systems, including
smart surveillance systems, intelligent robots, action-based
human-computer interfaces, and monitoring systems for
children and elderly persons. For instance, a methodology
to automatically detect and distinguish suspicious and vio-

Figure 1. Snapshots of our activity videos. In contrast to the previ-
ous datasets, the videos contain several actors performing multiple
interactions in the same scene. Pedestrians are also presented.

lent activities such as punching and pushing from normal
activities makes smart surveillance possible. Multiple ac-
tivities must be recognized and located, even when there
are pedestrians and/or other interacting persons.

Recently, spatio-temporal feature-based approaches
have been considered by several researchers [13, 3, 16, 9].
Motivated by the recent success of object recognition us-
ing local features such as SIFT descriptors [7], these ap-
proaches model a human activity as a set of sparse local
descriptors directly extracted from a 3-D XYT volume (i.e.
a concatenation of image frames along time axis). They
do not rely on background subtraction or human body-part
segmentation, and thus have been proved to be relatively
immune to noise, camera jitter, changing background, and
variations in size and illumination. For instance, feature-
based approaches have been applied to classify videos with
dynamic camera movements, such as movie scenes [6].

However, even though the previous spatio-temporal
feature-based approaches have been successful on classi-
fication of a short video containing a single periodic action
such as ‘walking’ and ‘waving’, they are limited on recog-
nition (i.e. detection with localization) of complex non-
periodic activities from a video containing multiple persons.
In real-world applications, actions and activities are seldom
periodic (e.g. ‘pushing’ and ‘hand shaking’), and we do not



know the entire class of possible actions. In addition, multi-
ple persons perform various interactions in the same scene,
which may be organized temporally and spatially to form
complex high-level activities with a hierarchical nature.

In this paper, we propose a novel video matching ap-
proach, spatio-temporal relationship match, which enables
the recognition of complex human activities from realistic
videos. The spatio-temporal relationship match is a new
matching function to measure similarity between two sets
of features extracted from different videos. The match ex-
plicitly compares temporal relationships (e.g. before and
during) as well as spatial relationships (e.g. near and
far) among extracted feature points in a 3-D XYT space,
making it suitable for detecting complex non-periodic activ-
ities. Approaches utilizing the Allen’s temporal predicates
[1] have shown successful results on modeling human activ-
ities with complex structures [4, 11], but there has been lit-
tle attempt to utilize the predicates for a space-time feature
based analysis as we do in this paper. Further, our match
is designed to support a scale invariant localization of the
detected activities, by estimating spatial and temporal scale
difference between two videos from the relations.

The hierarchical recognition of complex activities based
on simpler activities is also possible with our matching. The
previous space-time approaches were unsuitable for this
purpose, mainly because of their inability to handle multiple
actions in the same scene. Our recognition methodology has
been designed and implemented to support the hierarchical
process. In order to justify our approach, we test our system
with the new complex dataset composed of realistic multi-
person interaction videos (e.g. two persons ‘hugging’) that
has not been tested on other space-time approaches.

In Section 2, we discuss previous works related to our
paper. Section 3 provides the detailed description of the
spatio-temporal relationship matching of videos. The hu-
man activity detection algorithm and the localization algo-
rithm utilizing our relationship match is presented in the
Section 4, together with a hierarchical algorithm. In Sec-
tion 5, our system is tested on a complex dataset containing
multiple activities. Section 6 concludes the paper.

2. Related works
Several researchers have focused on tracking persons

and their body parts to recognize human actions. In gen-
eral, these approaches rely on a background subtraction to
segment the foregrounds (i.e. humans) and/or a methodol-
ogy to estimate human body parts. They recover 2-D (or
3-D XYZ) locations and status of human body parts per
frame, and model actions as a sequence of features. Dy-
namic time warping (DTW) algorithms and hidden Markov
models (HMMs) have been popularly used to recognize ac-
tions by analyzing sequential changes in features extracted
per frame (e.g. joint angles) [15]. Hierarchical approaches

Table 1. A table comparing properties of previous systems and our
new approach. ‘Structure’ indicates whether the system consid-
ers organization of feature points or not; ‘Localization’ specifies
the ability to locate where the activity is occurring; and ‘Multi-
ple activities’ indicates the ability of the system to analyze videos
containing multiple activities occurring simultaneously and/or se-
quentially. k is the number of feature vocabularies, n is the number
of features, x is the number of location candidates, and l is the av-
erage number of common features vocabularies in two inputs. In
general, x > n > k > l.

Approaches Structure Localiza-
tion

Multiple
activities

Hierarchi-
cal Complexity

Dollar et al. [3] O(kn)

Niebles et al. [9] v limited O(kn)

Savarese et al.
[12]

proximity
only v limited O(kn+ k2)

Scovanner et al.
[14]

co-occur
only O(kn+ k2)

Wong et al. [16] v v O(knx)

Our approach v v v v O(kn+ l2)

built upon the tracking of persons and/or their body parts
have also been developed [4, 11]. They represented a com-
plex activity as a concatenation of sub-events, and have ob-
tained successful results.

Activity recognition approaches that analyze a 3-D XYT
volume itself [2] or features extracted from it have gained
particular interest in the past few years [13, 3, 16, 5, 9, 6].
Researchers have shown that the spatio-temporal feature
based approaches are robust to noise, small camera move-
ments, and changes in lighting conditions, overcoming the
limitations of the tracking-based approaches. Dollar et
al. [3] proposed a new local feature extractor in a spatio-
temporal dimension, and applied support vector machines
(SVMs) to classify videos containing each activity. They
introduced a feature descriptor called ‘cuboid’, which cap-
tures information inside a small 3-D XYT volume patch,
and represented an activity as a bag-of-features. Scovan-
ner et al. [14] developed 3-D SIFT descriptors, and used
SVM classifiers on co-occurrence matrices of the 3-D SIFT
features to classify videos. Niebles and Fei-Fei [8] adopted
static Canny edge features and the spatio-temporal features
from [3], and applied part-based SVMs to classify actions
per frame.

Several researchers have worked on approaches using
probabilistic models. Niebles et al. [9] took advantage
of the Dollar’s feature detector, and constructed an action
learning system using probabilistic latent semantic analy-
sis (pLSA). They assumed that each feature is discrimina-
tive enough to identify likely action per feature, and applied
a spatial clustering to localize actions. Wong et al. [16]
adopted an extended version of pLSA, pLSA-ISM (implicit
shape model), which considers spatial location information



for classifying videos. Savarese et al. [12] proposed a
new matching kernel using ‘correlograms’, and have sug-
gested that the consideration on the spatio-temporal prox-
imity among features benefits the system.

However, as pointed out by [9], since the previous proba-
bilistic model-based approaches rely on a feature histogram
to represent an activity, they inherently require a reasonably
large portion of the entire video features to be those from the
activity being recognized. This limits them from detecting
activities when a video contains other moving objects (e.g.
pedestrians), and from detecting multiple activities occur-
ring in a same scene. One possible way for the detection is
to use the sliding windows method of both space and time
dimensions, but this method consumes a large amount of (if
not intractable) computations.

In this paper, we propose a new spatio-temporal feature-
based activity recognition methodology. Table 1 compares
the abilities of the previous systems and our proposed sys-
tem. The localization ability of [9, 12] is indicated as ‘lim-
ited’, because they are able to distinguish only a limited
number of actions (2˜3) in the same scene by using a spa-
tial clustering. The main contribution of our paper is the
introduction of the spatio-temporal relationship match. Up
to our knowledge, there has not been any previous system
which is able to address all of the above-mentioned issues.

3. Spatio-temporal relationship match
In this section, we present a novel kernel function to

measure similarity between two videos, the spatio-temporal
relationship match. A kernel function maps pairs of input
data into real numbers, K : V × V− > R where V is
the input space. Our kernel function serves as a likelihood
measurement between two sets of feature vectors extracted
from two videos containing human activities. An appropri-
ate kernel function capturing characteristics of the activi-
ties is essential for classifying and detecting activity videos,
which enables the correct recognition of the activities.

The basic idea of our spatio-temporal relationship match
is to evaluate the similarity between the structures of two
sets of feature points. Given a set of spatio-temporal fea-
tures extracted from a video, i.e. local video patches in a
3-D XYT space, our method calculates the spatial and tem-
poral relationships satisfied by the feature points (e.g. point
f1 is before f2, and f1 is near f2). By comparing such
relationships, the spatio-temporal relationship match mea-
sures “how many features two videos contain in common,
and how many among them exhibit an identical relation”
(Figure 2). The motivation behind our match is that fea-
ture points extracted from an activity video generate a par-
ticular spatio-temporal pattern in its 3-D XYT space. The
major advantage of our match kernel is its efficient consid-
eration of spatio-temporal structures among feature points.
We represent the structure of the 3-D feature points as a set
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Figure 2. An example of our spatio-temporal relationship match-
ing process. Given two videos (i.e. (a)), the system extracts feature
points and analyze their pair-wise relations as presented in (b). The
relationship histogram is computed per input video as described in
(c), and they are intersected to measure their similarity.

of pairwise relationships, and match them efficiently.

3.1. Features and their relations

A spatio-temporal local feature in a 3-D XYT dimen-
sion (i.e. a feature point) contains two types of informa-
tion: appearance information of the video patch, and its
location information in the 3-D space. A spatio-temporal
feature extractor (e.g. [3, 14]) detects each interest point lo-
cating a salient change in a video volume, and constructs
a descriptor summarizing a small video patch around it.
That is, a feature f is composed of two parts, described as
f = (fdes, f loc) where fdes is an appearance descriptor
and f loc is a 3-D coordinate of the feature.

We desribe the appearance part of features with k possi-
ble vocabularies. We group spatio-temporal features into k
clusters while ignoring the location part, so that each feature
corresponds to one of k possible types. More specifically,
we use k-means algorithm to cluster all f based on their
fdes value. Let an input v be a set of features, f1, ..., fn. If
we denote the center of the ith cluster as meani, then each
f in v goes into one of the k histogram bins as follows:

Hi(v) = {f | f ∈ v ∧ i = argminj ||f −meanj ||2} (1)

where ||f − meanj || is a distance between f and meanj ,
the Euclidean distance in our case. As a result, we have
decomposed the set v into k subsets (i.e. types), H1(v), ...,
Hk(v), based on their appearance.

Next, we measure the spatio-temporal relationships
among feature points, f loc1 , ..., f locn . We consider both tem-
poral relationships and spatial relationships, and use a set of
pair-wise predicates to describe the relations. That is, for all
possible pairing of f loca and f locb where 1 ≤ a, b ≤ n, we
analyze how two points are located in the XYT space.

Temporal ordering of feature points is particularly im-
portant, and we adopt the Allen’s temporal predicates
to describe temporal relations: equals, before, meets,



overlaps, during, starts, and finishes [1]. These pred-
icates describe relationships between two time intervals. A
spatio-temporal feature descriptor tends to describe a 3-D
volume patch instead of a single point (e.g. Figure 2 (b)),
meaning that it forms an interval when projected to the time
axis. Further, since a human activity is seldom instanta-
neous and takes certain duration, the interval representation
of features is necessary for our matching to hierarchically
recognize activities by treating simpler activities as features.

For each feature location f loc, we compute the starting
time and the ending time (fstart, fend) of the volume patch
associated with it, and describe their relations using the tem-
poral predicates:

equals(fa, fb) ⇐⇒ fstarta = fstartb and fenda = fendb

before(fa, fb) ⇐⇒ fenda < fstartb

meets(fa, fb) ⇐⇒ fenda = fstartb

overlaps(fa, fb) ⇐⇒ fstarta < fstartb < fenda

during(fa, fb) ⇐⇒ fstarta > fstartb and fenda < fendb

starts(fa, fb) ⇐⇒ fstarta = fstartb and fenda < fendb

finishes(fa, fb) ⇐⇒ fenda = fendb and fstarta > fstartb

We also consider the reverse predicates of the above
predicates except equals. We say that a predicate for two
feature points pred(fa, fb) is true if and only if the condi-
tion corresponding to the pred is satisfied by f loca and f locb .
In case of point-wise features, only three temporal predi-
cates, equals, before, and before−1, are considered.

Similarly, spatial predicates describing spatial distance
between two feature points are designed. The predicate
near indicates that two feature points are spatially closer
than a certain threshold, and the predicate far implies that
the two points are not close. xnear (or ynear) measures
whether x (or y) coordinates of two features are near.

near(fa, fb, threshold) ⇐⇒ dist(fa, fb) ≤ threshold

xnear(fa, fb, threshold) ⇐⇒ dist(fxa , f
x
b ) ≤ threshold

∧ ¬ near

ynear(fa, fb, threshold) ⇐⇒ dist(fya , f
y
b ) ≤ threshold

∧ ¬ near ∧ ¬ xnear

far(fa, fb, threshold) ⇐⇒ ¬ near ∧ ¬ xnear ∧ ¬ ynear

The set of satisfied pair-wise relationships provides us a
compact and efficient representation of the spatio-temporal
structure of the 3-D feature points. The intention is that two
videos containing an identical activity will contain similar
features having similar pair-wise relations.

3.2. Spatio-temporal relationship match kernel
Our spatio-temporal relationship match kernel is a

histogram-based match kernel, which measures the similar-
ity by constructing histograms and intersecting them. We
introduce a new histogram capturing both appearance and

relationship information of a video: the relationship his-
togram. A relationship histogram is a 3-dimensional his-
togram where the dimensions correspond to featuretype
× featuretype × relationship. Each bin of a relation-
ship histogram is designed to contain designated pairs of
two feature points from a video: Let R(v) be a relationship
histogram of an input v. Then, a feature pair (fa, fb) is in a
relationship histogram bin Rrel(i,j), if and only if fa is of the
appearance type i, fb is of j, and they satisfy the relation-
ship rel (i.e. rel(fa, fb) is true).

Rrel(i,j)(v) = {(fa, fb) | fa ∈ Hi(v)

∧fb ∈ Hj(v) ∧ rel(fa, fb) ∧ i < j}
(2)

That is, each bin collects pairs with two particular types
which satisfy a specified relationship. We assign a pair to a
bin only when i < j, in order to avoid an identical pair to
appear again in its reverse bin with their orders reversed.

There are two types of relationship histograms: a tem-
poral relationship histogram, and a spatial relationship his-
togram. For each video v, we construct one temporal re-
lationship histogram T (v) and one spatial relationship his-
togram S(v). A bin of a temporal relationship histogram
collects pairs with a specific temporal relationship, while
that of a spatial relationship histogram collects pairs of a
spatial relation. Since only one temporal relationship and
one spatial relationship are satisfied per a feature pair, each
histogram divides entire pairs of feature points in a video
into k2 · r subsets where r is the number of relationships.

T trel(i,j)(v) = {(fa, fb) | fa ∈ Hi(v)

∧fb ∈ Hj(v) ∧ trel(fa, fb) ∧ i < j}

Ssrel(i,j)(v) = {(fa, fb) | fa ∈ Hi(v)

∧fb ∈ Hj(v) ∧ srel(fa, fb) ∧ i < j}

(3)

where trel is one of 13 temporal relationships and srel is
one of 4 spatial relationships.

Our match kernel, KR, measures the similarity between
two inputs v1 and v2, by intersecting temporal and spa-
tial histograms (i.e. T (v1) ∩ T (v2) and S(v1) ∩ S(v2)).
An intersection of two histograms contains a pair of feature
points that is presented in both inputs with a similar appear-
ance and relationship. Thus, counting the number of pairs
in the intersections of histograms from two inputs provides
us how many pair-wise relations two videos share. Figure 2
shows an example process of our matching.

The function to count the number of pairs in an intersec-
tion between two histogram bins B1 and B2 is as follows:

I(B1, B2) = min(|B1|, |B2|) (4)

Using the histogram intersection function I , we define the
match kernel KR which counts the number of pairs in the
entire bins of the intersection.

KR(v1, v2) =

k∑
i=1

k∑
j=1

[
∑
trel

I
(
T trel(i,j)(v1), T

trel
(i,j)(v2)

)
+
∑
srel

I
(
Ssrel(i,j)(v1), S

srel
(i,j)(v2)

)
]

(5)



Since we only need to consider histogram bins with feature
types common in both inputs, our relationship intersection
can be computed inO(l2) where l is the number of common
feature types in v1 and v2 (k > l).

What we must note is that our kernel is expressed only
in terms of the histogram intersection functions. Based on
the fact that the histogram intersection is a Mercer’s kernel
[10], and the Mercer’s condition is closed under addition,
we know that our match kernel is a Mercer’s kernel. This
guarantees the optimal solution for kernel-based algorithms
using convex optimization, including SVMs.

4. Human activity recognition
In this section, we present methodologies for detection

and localization of human activities. Our system takes ad-
vantage of the relationship match kernel presented in the
previous section, detecting activities by comparing videos
(Subsection 4.1) and localizing them by estimating the start-
ing and ending locations of the activities (Subsection 4.2).
We also present how our algorithm is applied hierarchically
for the recognition of high-level activities in Subsection 4.3.

4.1. Activity detection and partial matching

We detect/match human activities by comparing videos.
Our system decides whether the testing video contains an
activity or not, by measuring the similarities between the
video and other training videos containing the activities.

Our system maintains one training dataset Dα per activ-
ity α. Each training set is composed of several videos of dif-
ferent persons performing one activity with various scales
and backgrounds. For each training video, we extract a set
of features only from a region around the person perform-
ing the action, since it may contain many actors. Sets of
features extracted from training videos Dα are maintained,
so that they can be compared with a testing video.

Given a testing video vtest, our system calculates the
similarities between vtest and all elements of Dα using
our spatio-temporal relationship match kernel. In general,
the number of features in a training video is significantly
smaller than that of features in a testing video. A train-
ing video contains only one activity while a testing video
may contain many, suggesting that the ability to perform
partial matching is essential. Since our spatio-temporal re-
lationship match kernel is a histogram intersection kernel,
our match supports partial matching. With the assumption
that the number of feature points are similar in all train-
ing videos, our spatio-temporal relationship match is able
to provide an optimal decision boundary for the detection,
even when a testing video contains more than one activity.

In order to compensate for the difference in the num-
ber of feature points among training videos and to make
the system learn correct decision boundaries, we normalize
each of the similarities computed by our matching. Let Dm

α

denote features extracted from mth training video in the set
Dα. The match between Dm

α and the testing video vtest,
KR(D

m
α , vtest), is divided by the number of relationships

in the training data Dm
α . That is, we are measuring the ra-

tio of relationships that are common in both inputs (i.e. an
interaction) and those in the training input:

match lk(Dm
α , vtest) = KR(D

m
α , vtest)/KR(D

m
α , Dm

α ) (6)

For each training dataset Dα, the system computes a set
of training videos close to the testing video, Cα:

Cα(vtest) = {Dm
α |match lk(Dm

α , vtest) > th} (7)

where th is a threshold value between 0 and 1 that has to
be learned. Based on the number of elements in Cα(vtest)
(i.e. number of similar videos in the training set), the system
decides whether the video vtest contains the activity α.

4.2. Localization

Once our system decides that a video contains an activ-
ity, the system localizes it. The system detects occurring lo-
cations of the activity (note that a video may contain multi-
ple executions of the same activity), by searching for the ac-
tivity’s spatial coordinates, its starting time, and its ending
time. We develop a localization algorithm based on voting:
For each training video vtr in Cα(vtest), our system com-
putes the intersection of relationship histograms of vtr and
vtest by performing the spatio-temporal relationship match.
Each pair of features in the intersection votes for the ex-
pected starting and ending locations of the activity in vtest,
estimating them based on the training data.

We assume that the location of the activity in each train-
ing video is provided along with the feature points extracted
(i.e. labeled training data). The starting location vstarttr =
(x, y, tstart) and the ending location vendtr = (x, y, tend)
is specified for each training video, and the goal is to find
those of the activity in the testing video.

Our system calculates the relative position of the activ-
ity’s starting location (or the ending location) from the cen-
ter of each pair in a training video. This tells us where the
pair thinks the starting location is. We normalize the relative
position by the scale of the pair (i.e. distance between two
elements of the pair), in order to make our algorithm scale
invariant. Since there are multiple pairs that have identical
feature types, we compute and maintain the set of normal-
ized relative positions per a pair of feature types as follows:

start relativeα(i, j) =

{d | ∃vtr ∃fa ∃fb : d =
vstarttr − (f loca + f locb )/2√
(f loca − f locb )T (f loca − f locb )

∧ vtr ∈ Ca(vtest) ∧ fa ∈ Hi(vtr) ∧ fb ∈ Hj(vtr)}

(8)

When computing the f loca + f locb and f loca − f locb , we only
consider center locations of the feature volumes fa and fb.
Each of vstarttr , f loca , and f locb has three dimensions (x, y, t),
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Figure 3. An example of our localization process. (a) shows a
specified starting location of a training video, and (b) shows an
example voting for a testing video.

and thus each d is a 3-dimensional vector. The normalized
relative position of the ending location end relativeα(i, j)
is computed similarly.

Next, our system computes the expected position of the
activity’s starting (or ending) location in the testing video
based on the start relative (or end relative) computed
with each training video. The idea is that the normalized
distance between the center of a pair and the starting (or
ending) location of an activity will be similar for all videos
containing the activity. By scaling the normalized relative
positions specified in start relative for each feature pair
in the testing video, and by adding the relative position to
the center of the pair, the system is able to calculate the
expected starting location of the activity in the testing video.
Each pair generates an expected location, constructing a set
of expected locations as follows:

expected startingα(vtest) = {s | ∃fa ∃fb ∃i ∃j :

fa ∈ Hi(vtest) ∧ fb ∈ Hj(vtest) ∧ s = (f loca + f locb )/2

+
√

(f loca − f locb )T (f loca − f locb ) · start relα(i, j)}

(9)

where we compute expected endingα(vtest) similarly.
Figure 3 shows an example localization.

The localization decision is made by combining all votes
in the set expected startingα(vtest). We divide the entire
3-D XYT space into several bins, and count the number of
votes inside each bin. Bins with local maxima are selected
as starting (or ending) time candidates, only when they have
sufficient votes as compared to the number of feature pairs
in the corresponding training video. The locations are com-
puted for each training video, and the system concatenates
the locations obtained by all training videos. The computa-
tional complexity of our localization algorithm per video is
O(l2 + x) where x is the number of 3-D bins.

4.3. Hierarchical recognition

As pointed out by several researchers [1, 4, 11], many
human activities are composed of several atomic-level ac-
tions organized hierarchically. In order to make our system
recognize complex high-level activities, our detection and
localization algorithms have been designed so that they can
be applied repeatedly, enabling the hierarchical recognition.

Our system first detects simple atomic actions (e.g. ‘arm
stretching’ and ‘arm withdrawing’) from a set of input fea-
tures. Once detected, our localization algorithm searches
for its starting time, ending time, and spatial location, as
well as the width and height of the bounding box containing
the features spatially. As a result, a localized atomic action
forms a 3-D XYT cuboid with a certain width, height, and
depth describing where the action is occurring. Treating the
localized actions as new features, our recognition algorithm
is applied hierarchically.

The key is that our recognition algorithm has an abil-
ity to correctly detect and localize (instead of classifying)
human activities from a video where multiple persons and
actions are present. Such an ability makes the encapsulation
of recognized actions into new ‘features’ possible, enabling
hierarchical application of the algorithms. For instance, a
two person interaction of a ‘hand-shake’ can be recognized
by matching relationships formed with atomic actions ‘arm
stretching’ and ‘arm withdrawing’ of two persons: if we de-
note stretching and withdrawing actions of persons 1 and 2
as st1, st2, wd1, and wd2, the most typical relationships
among them include st1 before wd1, st2 before wd2, st1
equals st2, wd1 equals wd2, and so on.

5. Experiments

5.1. Dataset

In order to test our system to recognize multiple high-
level activities from a video, we have constructed a new
dataset. Our dataset contains six types of two-person in-
teractions, which we define to be composed of 10 types
of non-periodic atomic-level actions. Shake-hands, point,
hug, push, kick, and punch are the six classes of interac-
tions. Stretch arm, withdraw arm, stretch leg, lower leg, and
shift forward, of left and right directions are the 10 types
of atomic actions composing the interactions. The dataset
is composed of 10 sets, where each set contains videos of
a pair of different persons performing all six interactions.
In sets 1 to 4, only two interacting persons appear in the
scene. In sets 5 to 8, both interacting persons and pedestri-
ans are present in the scene. In sets 9 and 10, several pairs
of interacting persons execute the activities simultaneously.
Each set has a different background, scale, and illumination.
6 participants performed activities with 10 different cloth-
ing conditions. Total of 60 interactions and more than 180
atomic actions are in the entire dataset.

The dataset is composed of several ‘unsegmented’
videos; a video in the dataset contains multiple executions
of interactions and atomic actions, occurring sequentially
and concurrently. On average, each video contains about
two interactions composed of several atomic actions. Fig-
ure 1 shows example snapshot images of our dataset. As
shown in the snapshots, not only the interactions of target



persons but also irrelevant pedestrians are present in the
videos. Each interaction or atomic action is labeled with
its type, starting location, and ending location, so that they
can be used either for training or for testing.

Even though the Weizmann and KTH datasets [2, 13]
have been popularly used for measuring classification accu-
racy of action recognition systems, the datasets were limited
in the sense that each of their videos contain a single peri-
odic action. All actions provided are periodic, except the
‘bend’ action in the Weizmann dataset. The dataset used
in [11] contains similar activities to our dataset, but their
videos were taken in an indoor environment with a fixed
view point, and with only two persons in a scene. Our
videos contain multiple persons and activities with various
conditions from an aerial image-like view point, which pre-
vents the previous systems from directly being applied.

5.2. Results

We have conducted three types of experiments to verify
the advantages of our system. In the first experiment, we
test our system on the action classification task using a pub-
lic dataset, the KTH dataset [13]. Next, we compare our
system with the previous systems on an atomic action de-
tection and localization task, using our new dataset. In the
third experiment, we use our system to recognize six types
of complex human-human interactions. The experiments
confirm that our system is able to analyze realistic videos.

We have implemented the matching, detection, and lo-
calization algorithms presented in the previous sections. We
took advantage of the ‘cuboid’ spatio-temporal feature ex-
tractor developed by [3]. The samples from the extracted
features are clustered into 500 types based on their appear-
ance for the matching (i.e. k = 500), similar to [9]. For
the localization voting, the entire 3-D XYT space is divided
into volume patches with the size of 10 ∗ 10 ∗ 5.

In the first experiment, we have applied our spatio-
temporal relationship match for the classification of simple
actions in the KTH dataset. Even though the focus of our
methodology is less on the classification of simple actions
(i.e. our contribution is on the detection and localization of
complex human activities that previous systems did not at-
tempt), we show that the classification performance of our
system is comparable to the other state-of-the-arts systems
designed for the action classification problem. Table 2 com-
pares the accuracies of our system using N-nearest neigh-
bors (N = 9) and other previous systems under two differ-
ent experimental settings. [16] and [5] are not directly com-
parable to our system, because they are using non-trivial
settings as [6] have mentioned. Among the systems using
the same features (i.e. cuboids) [3, 9, 12], our system ob-
tained the best accuracy.

For the second and the third experiments, we have used
our new dataset. We have randomly chosen two among 10
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Figure 4. ROC graphs of the atomic action detections. Blue rect-
angles are accuracies of the system using bag-of-features [3], red
‘-’s are that of the system utilizing the feature correlation informa-
tion similar to [14], and green triangles are that of our system. All
systems use ‘brightness’ cuboid features. We are able to observe
that our system constantly performs about 10˜20% superior to the
previous systems for false positive rates 0.1˜0.3. The area under
ROC are 0.83, 0.87, and 0.91 respectively.

sets to form a training set, and used the other sets for the
testing. We intentionally made the system to use a small
number of training videos, making the problem difficult, in
order to verify our system’s ability to learn the activities
on a realistic environment where only a limited amount of
training examples are available.

In the second experiment, we compared our system with
the previous systems on detecting 10 atomic actions from
segmented videos. Among the entire testing set, we have
randomly chosen 50 video segments where each of them
contains only one atomic action. In addition, 20 video seg-
ments which do not contain any actions have been tested.
The task is to decide whether each video contains an action
or not (i.e. the detection task described in 4.1). The binary
detection has been done for each type of atomic actions, and
the performance has been averaged. Figure 4 compares the
accuracies of our system and other systems using the same
spatio-temporal features. The accuracies with respect to the
false positive rates are specified. The graph suggests that
our system detects simple non-periodic actions more accu-
rately than those using the same features. The localization
accuracy of our system was 0.9 on average.

Finally, we verify that our system is able to recog-
nize multiple high-level activities from continuous videos,
which has not been attempted by previous systems. The
six types of human-human interactions have been recog-
nized hierarchically using the atomic action detection re-
sults, correctly matching, detecting, and localizing multiple
occurrences. Figure 5 shows an example of the recogni-
tion results of our system, and Table 3 illustrates the perfor-
mance of our system. We are able to observe that our system
recognizes interactions with a good accuracy, even though
only few training examples are provided. The recognition



Figure 5. Example snapshots of recognition results.

accuracy of the ‘punch’ was relatively low, since its dura-
tion and the number of atomic actions composing it was too
small to distinguish them from other activities. The results
suggest that our system is able to recognize non-periodic
human-human interactions even when the videos contain
other interacting persons and/or pedestrians. Our system
successfully recognizes activities sharing same atomic ac-
tions based on the actions’ spatio-temporal relations.

6. Conclusion
We have presented a human activity recognition method-

ology, which is designed to detect and localize complex
activities from realistic videos. Our spatio-temporal rela-
tionship match measures a similarity between two activ-
ity videos by considering structures among spatio-temporal
features. We have presented a detection and a scale-
invariant localization algorithm for locating multiple occur-
rences of activities. Through the experiments with our new
dataset, we have confirmed that our proposed system is able
to recognize complicated human activities hierarchically.
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