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ABSTRACT
In this paper, we present a core technology to enable robot recog-
nition of human activities during human-robot interactions. In par-
ticular, we propose a methodology for early recognition of activ-
ities from robot-centric videos (i.e., first-person videos) obtained
from a robot’s viewpoint during its interaction with humans. Early
recognition, which is also known as activity prediction, is an abil-
ity to infer an ongoing activity at its early stage. We present an
algorithm to recognize human activities targeting the camera from
streaming videos, enabling the robot to predict intended activities
of the interacting person as early as possible and take fast reactions
to such activities (e.g., avoiding harmful events targeting itself be-
fore they actually occur). We introduce the novel concept of ‘onset’
that efficiently summarizes pre-activity observations, and design a
recognition approach to consider event history in addition to visual
features from first-person videos. We propose to represent an onset
using a cascade histogram of time series gradients, and we describe
a novel algorithmic setup to take advantage of such onset for early
recognition of activities. The experimental results clearly illustrate
that the proposed concept of onset enables better/earlier recogni-
tion of human activities from first-person videos collected with a
robot.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—
video analysis; I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—motion; I.2.9 [Artificial Intelligence]: Robotics—
sensors

Keywords
Activity recognition; first-person videos; human-robot interaction

1. INTRODUCTION
First-person activity recognition is a research area studying auto-

mated recognition of human activities from videos with the actor’s
own viewpoint. Its main difference to the conventional 3rd-person
activity recognition is that the observer wearing the camera (e.g.,
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a robot) himself/herself is involved in the ongoing activity, mak-
ing its perception to become egocentric videos. This makes this
research area very germane to robotics (i.e., any visual observation
from a viewpoint of a robot becomes a first-person video), under-
standing of natural human-robot interactions in particular. First-
person activity recognition is essential to provide a robot activity-
level situation awareness ‘during’ social and physical human-robot
interactions (e.g., recognizing a hostile interaction that a human is
punching the robot and the robot is collapsing as a consequence).
Such concept is very different from conventional robot recognition
of human gesture-level commands (e.g., [18, 2]) or task-level ac-
tions (e.g., [9]) from stationary cameras without any direct phys-
ical interaction between humans and the robot. In our scenarios,
the camera moves dynamically as the robot gets involved in inter-
actions (e.g., Figure 4) and videos visually display very different
characteristics compared to conventional scenarios.

An ability particularly important and necessary for first-person
recognition systems is the ability to infer humans’ intended ac-
tivities at their early stage. For instance, public service robots
and surveillance/military robots must protect themselves from any
harmful events by inferring the beginning of dangerous activities
like an ‘assault’. Similarly, a wearable system must recognize on-
going events around the human as early as possible to provide ap-
propriate service for human tasks and to alarm accidents like ‘a
car running into the person’. Natural human-robot interaction also
becomes possible by making robots to provide early reaction to hu-
mans’ actions. This is not just about real-time implementations of
activity recognition, but more about recognition of activities from
observations only containing the beginning part of the activity. The
objective is to detect an ongoing activity in the middle of the activ-
ity execution, before it is completed.

This problem, recognition of an activity before fully observing
its execution, is called ‘early recognition’ or ‘activity prediction’
[14]. However, even though there are recent works on early recog-
nition, (1) it has never been studied for first-person videos and (2)
research on an early recognition approach that simultaneously con-
siders pre-activity observations as well as features from the ongo-
ing activity has been limited. In real-world first-person recogni-
tion scenarios, the system is required to continuously process long
video inputs containing a sequence of multiple activities. As a con-
sequence, it is important for the system to analyze not only the
video segment corresponding to the ongoing activity but also other
activity history or signals observed ‘prior’ to the beginning of the
activity. In this paper, we call such signals observed before the
activity as an onset of the activity.

This paper newly introduces the concept of onset, and presents
an early recognition approach to take advantage of them for the
robot recognition. We formulate the early recognition (i.e., pre-



diction) problem to consider activity history and human intention
together with ongoing observation of the activity, and discuss how
our onset signatures enable abstraction of such pre-activity obser-
vations for better recognition of activities. We define an onset ac-
tivity as short and subtle human motion (e.g., waving and reaching)
observable before main activities (e.g., shaking hands and throwing
an object), and attempt to capture/model onset patterns displayed
prior to each main activity. More specifically, we compute a col-
lection of weak classifier responses (each corresponding to a partic-
ular onset activity) over time and construct cascade histograms of
their time series gradients as our representation summarizing pre-
activity observations: onset signatures. Our method is particularly
designed to capture loose stochastic correlations between the on-
set and the target activities (e.g., reaching an object may or may
not occur before throwing but they are correlated) and also con-
sider absence of a certain onset (e.g., absence of waving before
punching) for better recognition. An efficient (linear time complex-
ity) algorithm is designed to take advantage of our onset signatures
to perform better early recognition from continuous videos, while
minimizing the amount of computations.

We formulate the early recognition problem in Section 2. We
present the concept of onset and our recognition approach to utilize
them in Section 3. Experimental results are discussed in Section 4,
and Section 5 concludes the paper.

1.1 Related work
The research area of first-person activity recognition is gain-

ing an increasing amount of attention recently. There are several
works on recognition of ego-actions of the person (i.e., actions of
the person wearing a camera such as skiing) [7, 4], object-oriented
analysis of humans using objects (e.g., a towel) [12, 13], or anal-
ysis based on face and gaze [5]. However, only very few works
considered recognition of interaction-level activities where multi-
ple humans (or robots) physically interact each other [16]. Fur-
thermore, no previous work attempted early recognition from first-
person videos.

The problem of early recognition (i.e., activity prediction) was
introduced and formulated with modern spatio-temporal features
in [14], but it was limited to 3rd-person videos and did not consider
pre-activity observations. There also have been works consider-
ing past activity history for predicting future states/locations using
state-models [9] and/or trajectories [8, 20] from 3rd-person videos.
However, even though these approaches are appropriate for predict-
ing future steps of the activities composed of clear states, they are
unsuitable for directly handling dynamic first-person videos whose
analysis requires various types of spatio-temporal video features
[11, 3, 17] that display highly sparse and noisy characteristics. In
order to enable accurate early recognition for interaction-level first-
person activities, simultaneous consideration of pre-activity obser-
vations (i.e., an onset) and ongoing activity observations is needed.

To our knowledge, this paper is the first paper is discuss ‘early
recognition’ problem for first-person videos from robots. As pointed
out above, previous activity prediction works were designed for
videos obtained from a static camera [14, 8] or those from a robot
simply standing without any ego-motion or interaction [9]. This
paper newly discusses the problem of activity prediction with first-
person videos displaying robot ego-motion (e.g., rotating) as well
as camera motion (e.g., shaking) caused by physical human-robot
interactions. We also believe it is the first paper to explicitly con-
sider pre-activity observations (i.e., frames ‘before’ the starting
time of the activity) for early recognition, which was not attempted
in [14, 6].
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Figure 1: Time intervals that need to be considered in our activ-
ity detection/prediction formulations. t indicates the observa-
tion time (i.e., the current frame) and t1 and t2 specify starting
and ending times of time intervals internally considered.

2. PROBLEM FORMULATION

2.1 Basic activity detection framework
Human activity detection is the problem of finding starting time

and ending time (i.e., a time interval) of each occurring activity
from a video input. Given a continuous video stream from frame
0 to t (we denote this as V [0, t] or simply as V ), for each activity
class C, the system is required to obtain time intervals [t1, t2] that it
believes to correspond to C. In general, this is solved by evaluating
all possible time intervals (i.e., [t1, t2] where 0 ≤ t1, t2 ≤ t) or
estimating intervals providing local maximum probability values:
P (C [t1,t2]|V ). Here, C [t1,t2] denotes the event of the activity C
starting exactly at time t1 and ending exactly at t2.

Assuming that the robot is only interested in the ‘activity that
just happened’, this can be further simplified as:

P (Ct | V ) =
∑
t1

P (C [t1,t] | V )

=

∑
t1
P (V [t1, t] | C [t1,t])P (C [t1,t])∑

C,t1
P (V [t1, t] | C [t1,t])P (C [t1,t])

(1)

where P (Ct|V ) represents the probability of the activity ‘ending’
at time t regardless of its starting time, and we use a basic proba-
bility marginalization with possible starting times t1. We call this
problem more specifically as ‘after-the-fact detection’, since the
system only focuses on the activity which is already finished at t
(Figure 1 (a)). Recognition can be performed by computing the
above probability at every time step as the video continues.

Instead of directly using the video stream V , visual features ab-
stracting V are often extracted and used for the recognition [1].
These include sparse local motion descriptors [11] capturing salient
local movements observed in videos, global motion descriptors [16]
representing camera movements, and semantic descriptors like per-
frame human body poses [19]. By modeling the distributions of
such features corresponding to the activity (i.e., P (V |C)), the recog-
nition can be performed following Equation 1: this is a binary clas-
sification of deciding whether the activity C is occurring or not at
each frame t. In our case, the concept of bag-of-visual-words were
used as our feature representation, modeling each distribution as
a histogram similar to [16]. Also notice that each visual feature
(e.g., 3-D XYT volume patch in the case of [11]) is extracted with
a particular time stamp, and they stay as is once extracted.



2.2 Activity prediction formulation
The ‘activity prediction’ problem is the problem of recognizing

ongoing activities at their early stage. In contrast to the above after-
the-fact detection problem, recognition must be made in the middle
of the activity before it is fully executed. The system must consider
the possibility that the activity is ‘ongoing’ at frame t, thus consid-
ering time intervals where t1 ≤ t ≤ t2 (Figure 1 (b)). In addition,
the system is required to explicitly consider multiple progress lev-
els d of the activity C:

P (Ct|V ) =

∑
d

∑
[t1,t2]

P (V [t1, t] | C [t1,t2], d)P (C [t1,t2], d)∑
C,d,[t1,t2]

P (V [t1, t] | C [t1,t2], d)P (C [t1,t2], d)

(2)
where t2 is a future frame and observation corresponding to V [t+
1, t2] is not available. The variable d is a conceptual progress status
of the activity (i.e., up to which point the activity has progressed so
far?) having a value between 0 and 1. Assuming that each activity
progresses linearly when occurring, the following equation holds:
t = t1 + d · (t2 − t1).

We also call this as early ‘detection’ problem, which extends
the early ‘classification’ problem (i.e., early categorization of seg-
mented videos) introduced in [14].

Early detection of human activities with context: Even though
the above formulation enables early detection of activities, it is
often insufficient for continuous video scenarios. It only utilizes
the video segment corresponding to the time interval alone (i.e.,
V [t1, t]) to make the decision, while ignoring all the other previous
video observations (i.e., V [0, t1 − 1]). In continuous videos, activ-
ities occur in a sequence and they are correlated. Furthermore, the
interacting person usually has his/her own intention, such as ‘harm-
ing’ the camera or ‘avoiding’ the robot. Figure 2 illustrates a graph-
ical model describing such activity-activity relations and intention-
activity relations.

Thus, the early detection problem can be formulated as:

P (Ct | V ) =
∑
d

∑
[t1,t2]

P (C [t1,t2], d | V )

∝
∑
d

∑
[t1,t2]

∑
(A,I)

P (C [t1,t2], d,A, I, V )
(3)

where t1 ≤ t ≤ t2, A is a set of all previous activities, I is the
intention of the interacting person, and P (C [t1,t2],A, I, V ) is the
joint probability. In our approach, we use the function F (·) to ap-
proximate this joint probability term, while designing it to consider
activity-activity relations (i.e., A = {A1, · · · , A|A|} and C) as well
as intention-activity relations displayed in Figure 2.

The key issues for the early detection are (i) designing the robust
joint probability function F , (ii) learning the model parameters in
F from training videos, and (iii) making an inference given a new
video observation V . This inference must be made at its every time
frame t while considering possible intervals [t1, t2]. We emphasize
that t is smaller than t2 in the case of an ongoing activity (i.e., it
is in the middle of execution), and F must be designed to consider
such characteristic. We discuss this more in Section 3.3.

Challenges: The main technical challenge is that the above com-
putations must be performed in real-time, making the detection as
early as possible. Particularly in robot perception, it is very con-
tradictory to say that “even though the approach is able to per-
form early recognition, its processing time will take multiple sec-
onds/minutes”. This implies that (1) we need to apply the recogni-
tion algorithm almost every frame (i.e., it should not wait) and that
(2) the algorithm still must perform in real-time or faster. This
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Figure 2: Graphical model representation of the scenario
where an interacting human performs a sequence of activities
under a specific intention. The robot is required to consider
activity-activity relations, capturing pre-activity observations.

makes a standard way of modeling/training the function F and
making an multi-iteration inference using a latent SVM formula-
tion similar to [10] or MCMC-based searching difficult.

3. ACTIVITY PREDICTION USING ONSET
In order to enable early detection while addressing the above

mentioned challenges, we introduce the new concept of ‘onset ac-
tivities’ and ‘onset signatures’ together with our recognition ap-
proach to take advantage of them. The idea is to learn weak detec-
tors for subtle short-term activities (i.e., onset activities) which are
closely or loosely related to the occurrence of activities-of-interest,
and make the recognition system to capture activity-activity rela-
tions (i.e., A) using such onset information. Our approach learns
onset patterns leading to the occurrence of each target activity while
explicitly considering stochastic nature of onsets, and performs its
early recognition by analyzing onset distributions observed before
the activity. Figure 3 (a) illustrates its overall concept.

3.1 Onset activities
We define onset activities as subtle activities which (1) occur

within a short time duration and (2) do not physically influence
the observer (i.e., a robot or a wearable camera), but (3) serve as
a direct/indirect cue to infer their following activities. ‘Standing’,
‘pointing’, and ‘picking up an object’ are typical examples of onset
activities. These activities themselves do not have strong mean-
ing and they do not influence the robot/camera directly, but they
can serve as indicators describing ‘what activity is likely to follow
next’. An example will be the activity of ‘picking up an object’
serving as the onset for ‘throwing an object’. Another example will
be ‘waving’ before ‘hand shaking’.

Typically, because of the subtle nature of onset activities, their
recognition becomes difficult and unreliable. The activities usu-
ally contain a small amount of human motion (e.g., only a subtle
arm/finger gesture is visible when ‘pointing’). This makes the de-
tectors for onset activities to become weak classifiers, and prevents
the system from directly using the onset recognition results. For in-
stance, average precisions (AP) of our onset activity detection were
0.1 to 0.2 in our dataset. Furthermore, onset activities often have
very stochastic nature, implying that onsets are not always observ-
able before activities (e.g., the person may have the ball beforehand
and throw it without the picking up action). Thus, an approach to
best utilize these weak detectors is required.
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(a) Early activity recognition framework with onset (b) Onset signature representation 

Figure 3: (a) Illustration of the overall concept of our early activity recognition pipeline using onset. The recognition approach is
designed so that it considers both the pre-activity observations (onset signatures) and video features from ongoing activities. (b)
Illustration of our onset signature representation, based on the multi-scale cascade histogram of time series gradients.

3.2 Onset signatures
We define onset signatures as a set of time series describing on-

set activity matching results. That is, given a continuous (stream-
ing) video, we measure the similarity between each possible video
segment and the onset activity, and record how the similarity is
changing over time. The objective is to use these time series as
features suggesting future activities. Each onset signature Gk(t) of
kth onset activity is more specifically computed as:

Gk(t) = max
r

(1−Dk([t− r, t])) (4)

where r is the model duration of the activity, and Dk([t − r, t])
is the distance between the model of the kth onset activity and the
video observation segment V [t − r, t]. We use a basic template
matching of bag-of-words representations (obtained from a set of
training videos Sk) as our Dk:

Dk([t1, t2]) =
∑
i

(mk
i − vi[t1, t2]))

2

(5)

where vi is the ith feature value and mk
i is its mean model value:

mk
i =

∑
V j∈Sk vji /|S

k|. In our implementation, we took advan-
tage of the same video features (with bag-of-visual-words repre-
sentation) described in Section 2.1: [11, 3, 19, 16].

The matching is performed for all t and possible r values, pro-
viding us the final Gk(t). The resulting Gk(t) forms a time series,
describing how our onset activity detector is responding to the on-
going video observation. We collect Gk(t) from all onset activities
and use them as our onset signature.

The template matching process takes time complexity of O(n ·
R) per frame where n is the feature dimension and R is the num-
ber of temporal window sizes we consider (R < 5 in our case).
Furthermore, the computation of onset signature per activity is in-
dependent to each other, making its parallelization possible.

Histogram representation of onset signatures: We design a his-
togram representation of onset signatures (Figure 3 (b)). The idea
is to make the system efficiently summarize the previous onset oc-
currence information from its time series, so that it can use it to
infer ongoing/future activities.

Typical representations of onset signatures are mean and max-
imum values of a fixed time window (e.g., frames between the

current frame and 50 frames before that). However, this is often
insufficient due to noisy and weak nature of onset matching (no-
tice that onset recognition relying on peak matching values give us
∼0.1 AP), and deeper analysis of time series is necessary. Thus, we
construct cascade histograms of time series gradients to represent
onset signatures.

Let || denote the concatenation operation of two vectors, [a1, · · · , an]
|| [b1, · · · , bn] = [a1, · · · , an, b1, · · · , bn]. Then, the histogram
representation of onset signature H at time t is defined as: H(t) =
H1(t−u, t) ||H2(t−u, t) || · · · ||H|A|(t−u, t), where Hk(t−
u, t) is the histogram for the kth onset activity computed based on
the time interval [t− u, t] with duration u (e.g., 50). Hk is defined
more specifically as:

Hk(t1, t2) =Hk

(
t1,

t1 + t2
2

)
||Hk

(
t1 + t2

2
, t2

)
|| [h+

k (t1, t2), h
−
k (t1, t2)]

(6)

where

h+
k (t1, t2) =

∣∣∣{t1 ≤ t ≤ t2 | Gk(t)−Gk(t− s) > 0}
∣∣∣ ,

h−k (t1, t2) =
∣∣∣{t1 ≤ t ≤ t2 | Gk(t)−Gk(t− s) ≤ 0}

∣∣∣ . (7)

Here, s is the step size of gradient computation, and we perform
this histogram construction for multiple s scales and concatenate
the results.

The above recursive equation hierarchically performs temporal
segmentation of the time series (i.e., our onset signatures) into mul-
tiple parts, and obtains a histogram of time series gradients corre-
sponding to each of them. That is, our hierarchical histogram is
constructed by applying our recursive function until it reaches the
level l. In our experiments, l = 3 gave us good results.

The final feature vector representation of the onset signature is
constructed as follows, by attaching mean and max values to the
histogram:

x(t) = H(t) ||

 t∑
t′=t−d

G1(t′)

u
, · · · ,

t∑
t′=t−d

Gn(t′)

u


||
[
max(G1(t′)), · · · ,max(Gn(t′))

]
.

(8)



(a) Results of our early activity recognition obtained from a ‘punching’ scene 

(b) Results of our early activity recognition obtained from a ‘hand shaking’ - ‘hugging’ scene 

Figure 4: Example result image sequences of our early activity recognition. A ‘punching’ activity (blue boxes), a ‘hand shaking’
activity (red box), and a ‘hugging’ activity (green box) are detected. We are able to observe that the camera displays ego-motion due
to human-robot interactions, such as it collapsing due to ‘punching’ and it shaking during ‘hand shaking’ interaction.

3.3 Early detection using onset signature
Based on its video observation V and computed onset signatures

x, our approach performs early detection of an activity by using a
set of binary classifiers. More specifically, we formulate the detec-
tor at time t as:

P (Ct | V ) ∝
∑
d

∑
[t1,t2]

∑
(A,I)

P (C [t1,t2], d,A, I, V )

∝
∑
d

∑
[t1,t2]

∑
(A,I)

P (A, V |C [t1,t2], d) · P (C [t1,t2], d|I)

≈max
d

max
[t1,t2]

∑
I

F(C,d)(x(t), V [t1, t]) · LC([t1, t2], I)

(9)
where we factor the joint probability into two terms using condi-
tional independence and uniform prior assumptions. The functions
F and LC are used to estimate the two terms while explicitly re-
flecting t1 ≤ t ≤ t2. We use support vector machine (SVM)-based
probability estimation in our implementation to approximate the
terms, which we describe more below.

We trained one binary classifier for each F(C,d) and made it to
estimate the probability scores. To support Equation 9, this was
done for each pair of activity C and possible progress level d. A
concatenation of the vector describing video features inside the in-
terval (i.e., V [t1, t]) and the vector representation of our onset sig-
nature (i.e., x(t)) serves as an input to these classifiers, and each of
the learned classifier F(C,d) measures the probability of the activity
C ongoing at the time t (with progress level d). The training of the
classifier is performed by providing positive and negative samples
of V and x together with their ground truth labels y. The function
LC is trained similarly, by providing I and [t1, t2] as inputs.

The idea is to abstract previous activity occurrences (i.e., A) us-
ing our onset signature x, instead of making the system to enumer-
ate through all possible combinations. That is, we directly used our
onset signatures as input features of the function F , thereby en-
abling efficient computations. Based on the training samples, the
classifier will learn to focus on particular onset signature while ig-
noring irrelevant onset activities.

Overall computations required for activity recognition is O(n ·
|d| · R) at each time step if a binary classifier with a linear com-
plexity is used (e.g., SVM), where n is the feature dimension, |d|
is the number of possible activity progress levels (we used 10 lev-
els in our experiments), and R is the number of activity durations

we consider (this influences possible starting points of the time in-
terval, t1). Our approach is able to cope with any types of binary
classifiers in principle (by making them predict either 0 or 1), and
does it more reliably with classifiers estimating probability.

4. EXPERIMENTS

4.1 Dataset
We constructed a new dataset composed of continuous human

activity videos taken from a robot’s first-person viewpoint. It is
an extension of the previous humanoid-based first-person video
dataset [16] whose videos mostly contain a single activity; our new
videos contain a sequence of 2∼6 activities (onset activities and in-
teractions). The motivation is that the community has been lacking
a public dataset for ‘early recognition’ (i.e., activity prediction): To
our knowledge, the public dataset most commonly used for activity
prediction is UT-Interaction [15]. However, even if we set aside
that UT-Interaction is not a first-person video dataset, it has a ma-
jor limitation: its videos contain activities executed in an random
order without any context (e.g., punching and then shaking hands).
This is very unnatural, since the actors are following a fixed script
without any intention on their own (unlike our new dataset).

Our camera was mounted on top of a humanoid similar to [16],
and we asked human subjects to perform a series of activities with
three different types of intentions: friendly, hostile (i.e., harming),
and avoiding. We labeled 9 types of human-robot interactions per-
formed by the actors: 4 types of onset activities and 5 types of
activities-of-interest. ‘Pointing the observer (i.e., the robot cam-
era)’, ‘reaching an object’, ‘standing up’, and ‘waving to the ob-
server’ are the 4 onset activities. ‘Handshaking with the observer’,
‘hugging the observer’, ‘punching the observer’, ‘throwing an ob-
ject at the observer’, and ‘running away from the observer’ are the
5 interaction-level activities in our dataset. The humanoid moves
as it is involved in the interaction (e.g., the camera jolting as an
impact of throwing, and the camera collapsing as a result of punch-
ing). Furthermore, our experiments were designed to capture trans-
lation and rotation movements of our robot, and thus these robot
ego-motion is present in our first-person videos. Figure 4 shows
example frames of our videos.

Videos with the resolution of 640*480 with 30fps were used.
Also, 320*240 depth videos were collected in addition to the con-
ventional RGB videos, so that the system obtains Kinect-based pos-
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Figure 5: Example result image sequences comparing our early detector (top) with the previous SVM detector using state-of-the-art
features (bottom). A ‘throwing’ activity (magenta boxes) and a ‘running away’ activity (cyan boxes) are detected. Notice that the
previous method detected the ‘throwing’ only *after* the ball actually hit the camera, while ours detected it as soon as the person
raised the hand. That is, our approach detects activities at their much earlier stage compared to the previous detector.

ture estimation results when available. The dataset consists of 8
sets, where each set contains continuous videos of human activi-
ties being performed by the same subject. It contains a total of 61
continuous videos with ∼180 executions of human activities.

4.2 Implementation
We extracted multiple types of state-of-the-arts visual features

from first-person videos, including global motion descriptors [16],
local motion descriptors [11, 3], and human posture descriptors
[19]. Once features are extracted from raw videos, we clustered
these features to obtain standard bag-of-visual-words feature repre-
sentation while using integral histograms for more efficient compu-
tations. Our approach and multiple baseline approaches including
the state-of-the-art early recognition approach [14] were trained/
tested/compared using our dataset.

We implemented (1) our approach taking advantage of onset
signatures as well as (2) its simplified version designed to only
use peak onset activity responses (instead of full onset signatures).
In addition, we implemented (3) an extended version of previous
state-of-the-art early recognition approach [14] originally designed
for the 3rd-person videos, and (4) made it to also take advantage of
our onset signatures. Furthermore, we implemented several base-
line activity detection approaches including (5) a sliding window
detector with Bayesian classifiers assuming a Gaussian distribution
(i.e., a after-the-fact detection approach), and (6) a state-of-the-art
activity detector using SVM with a non-linear kernel (i.e., RBF).
All of the above approaches took advantage of the same features
vector (i.e., the concatenation of four feature types [11, 3, 19, 16]),
which outperformed those using single feature type. We also tested
(7) the approach detecting activities solely based on onset signa-
tures (i.e., context-only).

All these approaches run faster than real-time on a standard desk-
top PC with our unoptimized C++ implementation (0.0036 sec per
frame), except for the adopted feature extraction part.

4.3 Evaluation
We use leave-one-set-out cross validation (i.e., 8-fold cross val-

idation) for continuous ‘detection’ tasks. Ground truth labels of
activity occurrences in videos for both the onset activities and the
interaction activities were provided, so that we can take advan-
tage of them for the training (i.e., a supervised learning setting)
and testing. At each round, for the testing, our approach computes
the probability P (Ct | V ) (which also can be viewed as a confi-
dence score) at every frame t. Treating its peak values as detections

Figure 6: A figure comparing performances of our early detec-
tion approaches with previous works and baselines. Mean AP,
which is an area under a precision-recall curve, is measured per
observation ratio. A higher graph suggests better performance;
a higher graph indicates that it ‘recognizes activities more ac-
curately given the same amount of observation’ and that ‘it is
able to recognize activities earlier than the others if the same
accuracy is assumed’. It clearly shows superiority of ours.

(while discarding overlapping intervals), we computed precision-
recall curves (PR-curves) by changing the detection threshold. De-
tected time intervals that overlap more than 50% with the ground
truth activity intervals were considered as true positives. Average
precision (AP) is also obtained from the curve by measuring the
area under the PR-curve, and mean AP is computed by averaging
APs of all activity classes.

In addition, in order to measure the early detection ability of our
approach, we tested our approaches and baselines with multiple dif-
ferent observation ratio settings similar to [14]. More specifically,
activity observation ratio was set from 0.1 to 1.0, and mean AP was
measured per observation ratio. An observation ratio specifies the
progress level of the activity execution. For example, observation



Figure 7: We compared approaches using different onset repre-
sentations to illustrate the advantages of our proposed cascade
histogram-based onset signature representation, while using an
approach without randomness [14] as a baseline.

ratio of 0.2 implies that the system was asked to make the detection
decision after observing the initial 20% of the activity (i.e., very
early detection), and observation ratio of 1.0 implies that it is a
standard after-the-fact detection. Let d be the observation ratio and
[g1, g2] be a ground truth time interval of the activity. For each ex-
periment with an observation ratio d, we removed all video features
extracted from the time interval [g1 + d · (g2 − g1), g2] (i.e., those
observed after d). In addition, only the detection found before the
observation ratio were consider as true positives.

4.4 Results
Figure 6 shows the mean AP values of activity detectors mea-

sured with various observation ratio settings. We are able to ob-
serve that our activity prediction formulation of using onset activi-
ties and their signatures is benefiting the system greatly. Mean APs
of our approach (with onset) were constantly higher by 0.1∼0.2
compared to the baseline SVM classifier using state-of-the-art fea-
tures, achieving the same AP much earlier. For instance, in order to
obtain the mean AP of 0.5, our early detector with onset signatures
requires 55% observation while the SVM requires more than 80%.
This gap can also be observed for integral bag-of-words with and
without onset. Figure 5 shows example images of these two detec-
tion results, confirming the superiority of our proposed approach.

Figure 8 illustrates PR curves of the approaches. Early recog-
nition approaches with our onset signatures particularly performed
well on the activity of ‘throwing an object’, since it very often had
a clear onset activity: ‘reaching the object’. Our approach also per-
formed well for ‘hugging’ and ‘shaking’ (relying on the existence
of the onset ‘waving’ and the absence of ‘reaching’ or ‘pointing’),
and detected ‘punching’ earlier than those not using onset.

We also conducted an additional experiment to investigate ad-
vantages of our cascade histogram-based onset signature represen-
tation. We compared the performance of our onset representation
with various other onset representations, including (i) the approach
adding video features obtained 1∼50 frames prior to the activity
in addition to those from the activity’s actual video segment, (ii)
the approach using a simple onset representation of mean and max

Table 1: A table comparing performances of the proposed ap-
proach with state-of-the-arts in terms of mean average pre-
cision (AP). Our proposed approach outperformed previous
works particularly when making early recognition.

Method 50% 

observation 

Full 

observation 

Ours 0.473 0.729 

Ryoo et al. [16] 0.360 0.717 

Integral BoW [14] 0.280 0.418 

SVM [3,11,16,19] 0.263 0.620 

Bayesian 0.254 0.427 

Onset only 0.127 0.156 

Random 0.056 0.089 

values, (iii) the approach only using our histogram-based onset rep-
resentation, and (iv) our final onset representation composed of his-
togram + mean and max. Figure 7 illustrates the result. It clearly
shows that our onset signature representation effectively captures
previous video information. Particularly, we are able to observe
that simply adding 50 frames prior to the time interval is only con-
fusing the system. Integral BoW was used as the base classifier in
this experiment, since it does not contain randomness.

Finally, we explicitly compared recognition performances of our
proposed early recognition approach with previous state-of-the-art
approaches on our video dataset. Table 1 shows the results. Not
only the final activity detection accuracies but also the early detec-
tion accuracies (i.e., observation ratio 50%) were compared.

5. CONCLUSION
This paper presented a methodology for early recognition of hu-

man activities. Early recognition ability is very essential for first-
person vision systems which are required to function in real-world
environments in real-time while constantly interacting with oth-
ers. This makes the proposed technology very necessary for ro-
bust human-robot interactions, and this paper investigates such con-
cepts for the first time. We formulated the early recognition prob-
lem to consider pre-activity observations, and presented an efficient
new approach that uses the concept of ‘onset’. Experimental re-
sults confirmed that our formulation enables superior early recogni-
tion performance to previous conventional approaches, and that our
histogram-based representation of onset signatures benefits early
recognition by capturing pre-activity observations.
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