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Abstract This paper describes a stochastic methodology for
the recognition of various types of high-level group activi-
ties. Our system maintains a probabilistic representation of
a group activity, describing how individual activities of its
group members must be organized temporally, spatially, and
logically. In order to recognize each of the represented group
activities, our system searches for a set of group members
that has the maximum posterior probability of satisfying its
representation. A hierarchical recognition algorithm utilizing
a Markov chain Monte Carlo (MCMC)-based probability dis-
tribution sampling has been designed, detecting group activ-
ities and finding the acting groups simultaneously. The sys-
tem has been tested to recognize complex activities such as
‘a group of thieves stealing an object from another group’
and ‘a group assaulting a person’. Videos downloaded from
YouTube as well as videos that we have taken are tested. Ex-
perimental results show that our system recognizes a wide
range of group activities more reliably and accurately, as com-
pared to previous approaches.

1 Introduction

A significant amount of research has addressed the recogni-
tion of human activities recently. Researchers have been par-
ticularly successful in recognizing the activities of one in-
dividual or between two individuals, such as punching and
hand-shaking. Notably, we, in our previous work [21], have
presented a representation syntax to describe high-level human-
human interactions based on their sub-events, and proposed
a hierarchical algorithm to recognize represented interactions
probabilistically. Not only simple interactions such as push-
ing, kicking, and hugging are recognized, but also recursive
interactions like ‘fighting’ between two persons are recog-
nized with our previous framework. In this paper, we take our
next evolutionary step in human activity recognition: recog-
nition of group activities.

Group activities are the activities that can be character-
ized by movements of members who belong to one or more

Fig. 1 Snapshots of group activities. The left figure shows a group-
group interaction, ‘group stealing’. The right figure shows a group-
group interaction, ‘group arresting’.

conceptual groups. Recognition of groups and their activi-
ties makes the analysis of high-level events possible, which
are semantically meaningful when overall actions of mul-
tiple persons are considered jointly but not when they are
considered individually. Automated recognition of suspicious
groups and their activities such as ‘a group of thieves robbing
a bank’ is essential for the construction of high-level surveil-
lance systems. The analysis of movements and plays in team
sports also becomes possible with the group activity recog-
nition system. The semantic understanding of military oper-
ations and joint works is another application of it. Figure 1
shows example group activities.

The recognition of complex group activities is a chal-
lenging task, particularly due to noisy observations and struc-
tural uncertainties of group activities. A group activity is per-
formed by a varying number of participants, and the sub-
events composing it (i.e. actions and interactions) are depen-
dent on the situation. A sub-event of a group activity may oc-
cur for certain executions and may not for others, suggesting
its stochastic nature. Further, the relationship between two
sub-events may have multiple possibilities, implying that they
need to be represented and recognized probabilistically.

In this paper, we present a novel methodology for the
probabilistic recognition of high-level group activities. Our
approach is to encode human knowledge on the structure of
group activities while considering their stochastic nature, and
to make the system recognize group activities based on their
representation hierarchically. That is, we are crossing the hori-
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zon of previous description-based human activity recognition
approaches [29,8] toward the recognition of group activities.
We believe that ours is the first paper presenting stochastic
recognition methodology for group activities with complex
temporal, spatial, and logical structures. We focus on both a
new format for the group activity representation and a new
recognition algorithm.

Our system describes group activities in terms of a formal
representation using a context-free grammar (CFG) as its syn-
tax. A group activity is decomposed into several single person
actions and person-person interactions between members of
groups (i.e. sub-events), and our programming language-like
representation describes the group activity by attaching uni-
versal quantifiers (∀) and/or existential quantifiers (∃) to those
sub-events. For example, the group activity ‘all members are
carrying their baggage’ must be represented by applying the
universal quantifier to the individual activity ‘a person car-
ries baggage’, while ‘one member of the group raises his/her
hand’ must be represented by applying the existential quanti-
fier to ‘a person raises his/her hand’. Spatial constraints such
as ‘all members of one group should be spatially close’ must
also be listed as well. Furthermore, we have extended our rep-
resentation to include the concept of subgroups.

Importantly, our representation is designed to describe
stochastic group activities. As presented above, our represen-
tation describes the structure of each group activity in terms
of sub-events which can either be simpler group activities or
activities of individual members. In order to capture the prob-
abilistic characteristics of such structures, our representation
specifies the probability of each sub-event appearing given
the group activity as well as the probability of each relation-
ship between time intervals of the sub-events being satisfied.

Our system recognizes group activities by stochastically
searching for individuals whose activities satisfy the repre-
sentation of the group activity with the highest probability.
That is, our system does not rely on the spatial correct seg-
mentation of groups like most previous systems. In our ap-
proach, individual activities of persons in the scene are first
recognized, and then used for the group activity recognition
by comparing them with the representation. A hierarchical al-
gorithm is designed to prune group member candidates that
violate temporal constraints of the group activity. We model
the probability distribution of the group activity using the
Markov chain Monte Carlo (MCMC), and search for group
members with the maximum posterior probability. For exam-
ple, recognition of the group activity ‘all members are carry-
ing their baggage’ is done by detecting individuals who per-
formed the activity ‘a person carries baggage’ concurrently
with a high probability. As a result of the algorithm, group
activities and groups performing the group activities are rec-
ognized simultaneously.

We review previous works on group activity recognition
while comparing them with our work in Section 2. In Section
3, our group activity representation syntax is provided. Sec-
tion 4 presents our stochastic recognition methodology utiliz-
ing MCMC. The recognition problem is defined as a hierar-
chical Bayesian inference in Subsection 4.2, and the method-

ology to solve it is presented in Subsections 4.3 and 4.4. We
discuss the experimental results in Section 5, and Section 6
concludes the paper.

2 Related works

The methodology we introduce throughout the paper is de-
signed to recognize various types of group activities includ-
ing group actions, group-persons interactions, group-group
interactions, and intra-group interactions. The motivation is
to construct a universal framework for the representation and
recognition of complex group activities. Even though recog-
nition of group activities has been paid less amount of at-
tention, there has been a large amount of previous works on
human activity recognition since early 90s [1,26]. In this sec-
tion, we review various previous works on human activity
recognition, while comparing their abilities (e.g. whether they
are able to recognize group activities, whether they are able to
make probabilistic decisions, ...) with our proposed system.

2.1 Approaches with sequential models

Activity recognition approaches using sequential models have
been widely studied by many researchers. These sequential
models represent an activity as a particular sequence of ob-
servations (i.e. features or sub-events), and recognize it from
videos by probabilistically matching them with the model.
Various methods including hidden Markov models [15,30],
dynamic Bayesian networks [16,6], and stochastic context-
free grammars [10] have been developed for the sequential
recognition. Because of their characteristics, they were lim-
ited on handling human activities with complex temporal struc-
tures, and have focused on recognition of relatively simple
and sequentially organized activities.

Oliver et al. [15] have adopted coupled HMMs to recog-
nize interactions between two persons. Their HMMs model
an interaction as a sequence of hidden states, each describ-
ing status of actors in the scene. Similarly, Park and Ag-
garwal [16] recognized interactions between two persons us-
ing DBNs. Ivanov and Bobick [10] designed a methodol-
ogy to recognize multi-agent activities using SCFGs. They
have represented human activities in a parking lot in terms
of production rules of a CFG. These production rules are de-
signed/learned to generate a sequence of terminals probabilis-
tically, where each terminal correspond to an atomic-level ac-
tion. The system was able to recognize hierarchical activities
using stochastic parsing techniques, but only sequential rela-
tions (i.e. A occurred before B) were allowed in the repre-
sentation.

While most of the approaches with sequential models have
focused on individual-level human activities, there have been
attempts to recognize group activities using these models.
Cupillard et al. [4] recognized intra-group interactions with
a fixed number of participants using state models. Their fo-
cus was on the recognition of one specific group activity, ‘a
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group is fighting’. Gong and Xiang [6] successfully recog-
nized interactions between multiple objects using dynamic
probabilistic networks, similar to DBNs. Their system also
focused on only one class of group activity, intra-group in-
teractions, and the number and types of participants were
also fixed, as in [4]. Vaswani et al. [27] have analyzed the
sequential changes in polygonal shapes formed by locations
of multiple objects. They were able to measure overall ab-
normality in the movements of multiple objects. Similarly,
Khan and Shah [11] recognized group activities by analyzing
group members’ rigidity formation sequentially. Their sys-
tem recognized spatially structured group activities, a group
parading for example, which is a type of ‘all members of a
group showing an identical action’. Zhang et al. [30] recog-
nized intra-group interactions among limited number of par-
ticipants in a meeting room using multi-layered HMMs.

However, each of these systems was designed to focus on
the recognition of a single type of group activities. They ei-
ther focused on group activities where each group member
has its own role different from others [4,6,30], or those rep-
resented by an overall spatial formulation of group members
[27,11]. The group activities of the first type are very simi-
lar to multi-agent activities recognized by [15,10,16], except
for the fact that they are conceptually grouped by thev sys-
tem. Further, most previous works assume that group mem-
bers are spatially separable from non-members, to recognize
group activities.

2.2 Description-based approaches

Description-based approaches are the approaches recogniz-
ing human activities by maintaining their knowledge on tem-
poral, spatial, and logical structure of the activities. These
approaches are particularly suitable for representing and rec-
ognizing high-level human activities having complex orga-
nizations and structures (e.g. A occurred during B), such
as ‘stealing’ and ‘fighting’ required for surveillance applica-
tions. Various models have been proposed to describe human
activities, including representation languages [5,21], logical
forms [22], and network forms [17,25]. Overall idea of a
description-based approach is illustrated in Figure 2. Notice
that many description-based approaches have used CFGs as
a syntax to represent activities formally [5,21], but their us-
age is very different from the sequential approaches using
SCFGs mentioned in the previous subsection. Our methodol-
ogy presented in this paper falls into this category, and we dis-
cuss previous description-based approaches while comparing
them with ours in this subsection.

Previous description-based approach focused on the recog-
nition of actions performed by a single person, or interactions
by a limited number of persons. Allen [2] introduced his tem-
poral predicates, enabling one to describe temporal organi-
zation of events and activities in terms of first order logic.
Allen’s temporal predicates have been adopted by many re-
searchers for the representation of activities’ temporal struc-
tures. Pinhanez and Bobick [17] converted temporal networks
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Fig. 2 Overall process of our description-based group activity
recognition. Recognition is performed by semantically matching ac-
tivities’ representations with given observations. For example, the
system maintains the representation of ‘group stealing’, specifying
that ‘a thief must take object while the other group members are
distracting its owners’. Our system stochastically searches for ob-
servations satisfying such representation. Notice that CFGs are used
as a ‘representation syntax’ to formally encode human knowledge
of activities, in contrast to sequential approaches using SCFGs to
directly ’recognize’ activities by parsing.

of Allen [2] into a past-now-future (PNF) network, recogniz-
ing human actions in a kitchen environment. The system was
able to compensate for a single failure. Intille and Bobick [9]
recognized activities of multiple agents by constructing a rep-
resentation similar to a programming language. Even though
temporal structures of activities have been described only us-
ing two types of predicates (before and around), they have
shown successful results for American football play analysis.
Siskind [22] represented human actions in a form similar to a
first order logic with Allen’s temporal predicates. Their event
logic focused on a particular class of activities called ‘liquid’
events, and it was able to represent activities having multiple
levels of hierarchy by limiting a sub-event to be used only
once.

Francois et al. [5] have developed their representation
language called ‘VERL’ to describe human activities. Their
language categorizes activities into primitive events, single
thread events, and multi-thread events, enabling the represen-
tation of human activities having three levels of hierarchy.
Allen’s temporal predicates, spatial predicates, and logical
predicates have been used to represent the conditions neces-
sary for the activities. Hakeem et al. [7] also have introduced
an activity representation language, ‘CASEE’, which is sim-
ilar to VERL. They have represented an activity as a con-
junction of necessary temporal and causal relations, and have
recognized various activities involving persons and vehicles.
Vu et al.’s [29] hierarchical approach also recognized activ-
ities represented as conjunctions of sub-events. These repre-
sentation languages can be viewed as constrained versions of
full first order logic particularly tuned toward computer vi-
sion based recognitions.

Furthermore, there have been attempts to incorporate prob-
abilistic uncertainties into description-based logical models.
Even though the above mentioned description-based approaches
are able to recognize activities with complex structures, they
have difficulties when their observations are noisy and/or sub-
events have a stochastic (i.e. uncertain) nature. The following
methods have been designed to overcome the limitations of
deterministic description-based approaches on handling noisy
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inputs and failures of low-level components probabilistically.
Ryoo and Aggarwal [21] presented a description-based recog-
nition approach that probabilistically compensates for the noisy
observations and low-level components. They have designed
their representation language using a CFG as its syntax, which
enables the explicit description of the time interval of the ac-
tivity being represented in contrast to the above mentioned
works. Although their recognition system was limited to pro-
cess interactions between two persons only, it was able to
represent and recognize activities having complex structures
with any levels of hierarchy (even recursive activities).

In the similar context, there have been attempts to adopt
general logical models for probabilistic inferences to recog-
nize human activities. Artificial intelligence researchers have
developed a probabilistic inference framework for logically
represented (i.e. description-based) activity models, includ-
ing Bayesian Logic (BLOG) [14], Relational Markov Net-
works (RMNs) [24], and Markov Logic Networks (MLNs)
[18]. Tran and Davis [25] have successfully applied MLNs
for the computer vision-based activity recognition, probabilis-
tically inferring events in a parking lot. In addition, RMNs
have been successfully used for modeling temporal patterns
for location sensor-based (e.g. GPS) activity recognition [13].

However, even though the above-mentioned approaches
have attempted to integrate logical inference-based method-
ologies into a probabilistic framework, they were limited on
recognizing groups and their activities. The number of partic-
ipants involved in a group activity is unknown and their re-
lationships change dynamically, preventing the previous ap-
proaches from directly being applied. The concept of groups
must be introduced and represented to recognize complex
group activities. Further, previous inference engines have dif-
ficulty recognizing highly hierarchical activities with multi-
ple actors, since most of them (e.g. MLNs) make an inference
using binary predicates without inferring the occurring time
of the activity being recognized.

The contribution of our paper is on the stochastic repre-
sentation and recognition methodology for group activities,
which is designed to represent and recognize as broad range
of high-level group activities as possible. Even though the
recognition of complex group activities is important for many
applications including surveillance, sports play analysis, and
military systems, it has been largely unexplored by previ-
ous researchers. Our methodology captures uncertainties and
variations in the structure of complex group activities, reli-
ably recognizing them. We in the previous version of our
paper [20] proposed a deterministic recognition system for
group activities, but it was not able to compensate for the fail-
ures of low-level detections. In this paper, we overcome the
limitations of our previous approach by proposing a method-
ology to represent and recognize structurally stochastic group
activities. The performance of our new system is compared
with the previous one in the experimental section. Table 1
compares the abilities of our approach with those of other ac-
tivity recognition approaches, illustrating the advantages of
our approach.

Table 1 Comparisons among abilities of the recognition systems for
multi-agent activities and/or group activities. The column ‘complex
temporal relations’ specifies whether the system is able to represent
activities having complex temporal structures (e.g. Allen’s temporal
predicates [2]). ‘Stochastic’ indicates whether the activity recogni-
tion is performed stochastically or not. [9,5] are designed probabilis-
tically, but is limited on compensation for the failures of their low-
level components because of conditional independence assumption.
‘Varying number of group members’ describe the systems’ ability to
handle groups with various sizes. [27,20] are able to handle a cer-
tain portion of size changes in groups, but have limitations when the
group size is large.
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3 Representation

The approach we take to represent a high-level group activity
is to decompose it into several simpler activities, which we
call sub-events of the activity. Sub-events of a group activity
can be actions of a group member, interactions between the
members, and/or other group activities of the same group. We
first discuss different types of group activities that our system
represents, and then present our formal representation syntax.

3.1 Types of group activities

We categorize group activities by considering the number of
participating groups, the number of participants not in any
group, and types of the activities’ sub-events.

Group actions. If a group activity can be specified only us-
ing actions of its group members, we call it a group action.
‘Marching’ is a typical example of group actions: the activ-
ity can be characterized as all group members showing one
type of individual action, ‘moving’. The ‘marching’ can be
denoted as March(Group G1).

Group-persons interactions. If a group as well as persons
outside of the group participates in the activity, we denote it
as a group-persons interaction. The activity ‘march by sig-
nal’, which indicates an activity where a group starts march-
ing after getting an order from a commander outside the group,
is an example. ‘March by signal’ is denoted in the form of
MarchBySignal(Group G1, Person p1).
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Group-group interactions. Two groups fighting and two groups
having a conversation are good examples of group-group in-
teractions. A group-group interaction can be composed of the
actions of a group member of any group and/or interactions
between two members from each group. A group-group fight-
ing can be notated as GroupGroupFighting(Group G1, Group
G2).

Intra-group interactions. Intra-group interactions are group
activities that involve interactions between members of the
same group as sub-events. A group activity indicating that
two members of a group are fighting is an example of intra-
group interactions: InterGroupFighting(Group G1).

Combinations. Our system is designed to represent group
activities of the above-mentioned four elementary types as
well as more complicated activities that can be decomposed
into the elementary types (i.e. interactions between multiple
groups and persons).

3.2 Group activity representation

We present a general representation syntax that is able to de-
scribe group activities of any of above-mentioned categories
hierarchically. The concept of the member variables and the
group spatial predicates, which have not been covered by any
of previous activity representation methodologies, are newly
introduced to denote participating group members and to de-
scribe spatial constraints needed among the group members.
Based on new concepts and predicates, we represent a group
activity in terms of three components: time intervals of ac-
tivities of individual members (or other simpler group ac-
tivities) composing it, the relationship specifying the tempo-
ral structure among sub-events, and necessary spatial condi-
tions among group members. A detailed context-free gram-
mar (CFG) syntax of our representation is presented in this
subsection.

Member variables. A member variable is a variable used to
denote one arbitrary member or all members of a group. We
attach an existential quantifier (∃) or a universal quantifier
(∀) to a member variable, in order to describe conditions that
have to be satisfied by one member or all members of a group.
If an existential quantifier is attached to a member variable,
there has to be at least one individual member of the group
who can be associated with the member variable to make
related conditions true. If a universal quantifier is attached,
all members of the group must be able to be associated with
the member variable. That is, by using member variables as
participants of sub-events, we are able to describe sub-events
needed to be performed by all group members or by any one
member. In addition, sub-events needed to be performed by
the same individual may also be specified by using the same
member variable as their participant. Our syntax to represent
a list of member variables and its example are presented be-
low.

MemberV ariableDefs
→ MemberV ariableDef“, ”MemberV ariablsDefs
| MemberV ariableDef

MemberV ariableDef
→ Quantifier person var “in” group var

Quantifier → “∀”|“∃”
Ex > ∀ a in G1, ∃ b in G2, ∃ c in G3, ...

Time intervals. A time interval specifies a starting time and
an ending time of an occurring sub-event. A group activity
is composed of multiple sub-events whose participants are
specified using member variables and/or other non-member
participants. In order to describe temporal structure of a group
activity, both the sub-events composing the group activity and
their time intervals must be listed. The formal syntax is as fol-
lows:

T imeIntervalDefs
→ “def”“(”time var“, ”ActivityName“)”
| “list”“(”“def”“(”time var“, ”ActivityName“)”“, ”

T imeIntervalDefs“)”
Ex > list( def(t1, Carrying(a)), def(t2, ...) )

Predicates. Predicates are binary functions that are used to
describe temporal, spatial, and logical relationships needed
for the activity. Our system adopts Allen’s temporal pred-
icates (before, meets, overlaps, during, starts, finishes, and
equals) [3], which have been widely used to specify tempo-
ral structures. Spatial predicates between individual persons,
near and touch, are also used. Spatial predicates for describ-
ing a spatial status of a group are newly designed and added
for the representation, whose definition is listed below. The
predicate dense and sparse describe whether all group mem-
bers are close to each other or not. Logical predicates (and, or,
and not) are defined in a conventional manner to concatenate
multiple predicates.

dense(Group G, threshold) ⇐⇒
Relative distance between any (g1, g2) ∈ G < threshold

sparse(Group G, threshold) ⇐⇒
Relative distance between any (g1, g2) ∈ G > threshold

Therefore, CFG syntax to represent necessary relation-
ships of a group activity is defined using predicates. Note that
the special time interval ‘this’ is used to specify the temporal
relationship between the defining group activity itself and its
other sub-events.

Relationship
→LogicalPredicate“(”Relationship“, ”Relationship“)”
| TemporalRelationship
| SpatialRelationship
| “null”

TemporalRelationship
→TemporalPredicate“(”“this”“, ”time var“)”
| TemporalPredicate“(”time var“, ”“this”“)”
| TemporalPredicate“(”time var“, ”time var“)”

SpatialRelationship
→ IndividualSpatialPredicate

“(”person var“, ”person var“, ”threshold“)”
→GroupSpatialPredicate“(”group var“, ”threshold“)”
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IndividualSpatialPredicate → “near” | “touch”
GroupSpatialPredicate → “dense” | “sparse”

As a result, the full representation is composed of three
main parts: a list of member variables MemberVariableDefs,
a list of time intervals of sub-events TimeIntervalDefs, and a
list of relationships Relationship. Participants, member vari-
ables, and time intervals defined through participants, Mem-
berVariableDefs, and TimeIntervalDefs are used in the term
Relationship to describe necessary relationships. Three terms
are integrated in our final CFG syntax where GroupActivi-
tyDefine is the starting variable. Example representations of
the group activity ‘a group of people are carrying a large ob-
ject by command of another person’ and ‘group fighting’ are
presented as well.

GroupActivityDefine
→name“(”participants“)”“ = ”

“{”MemberV ariableDefs“, ”T imeIntervalDefs“, ”
Relationship“}; ”

Ex > CarryByCommand(Group G1, P erson p1) = {
∀a in G1,
list( def(t1, Carry(a)), def(t2, Command(p1))),
and( equals(t1, this), meets(t2, t1))

};
GroupGroupFighting(Group G1, Group G2) = {
∀a in G1, ∃b in G2,
list( def(t1,Approach(G1, G2)),

def(t2,Fight(a, b))),
and( and(dense(G1), dense(G2)),

and(equals(t1, this), meets(t1, t2)))
};

A group activity can always be decomposed into four el-
ementary types if and only if member variables can be di-
vided into independent pairs and/or singles. That is, we limit
a member variable to have interaction with only one other
variable to make the recognition process tractable.

Subgroups. We further extend our representation to include
the concept of subgroups. We say that the group B is a sub-
group of group A, if and only if all group members of B are
members of A as well. The subgroups are particularly useful
when describing a group activity of a portion of group mem-
bers showing a specific type of interaction. Our representa-
tion syntax allows the description of subgroups. When defin-
ing a subgroup, we make its group variable group var to
have the form of the defining subgroup name subgroup name,
attached at the end of the existing group name group name
followed by a dot (i.e. “.”).

group var → group name|group name“.”subgroup name
Ex > ∀a ∈ G1, ∃b ∈ G1.G2

3.3 Stochastic representation

Human activities, especially group activities, are often com-
posed of sub-events having a stochastic nature. Certain sub-
events may occur during one execution of the group activ-
ity, while not in another. In addition, the relationship between

time intervals of these sub-events may change depending on
the environment or participants. For example, in the case of
‘group assault’ where a group of persons are attacking a par-
ticular target person, there may (or may not) exist some group
members who are just watching or guarding the area. These
sub-events of ‘watching’ and ‘guarding’ are stochastic sub-
events, where each of them has a certain probability of occur-
ring.

Our group activity representation is designed to capture
such structural variations caused by stochastic sub-events. In
the case of a stochastic sub-event, the time interval associated
with it is defined together with its occurrence probability, de-
scribing how likely the sub-event appears when the group ac-
tivity containing it occurs. As a consequence, the following
production rule has been added to our CFG syntax:

T imeIntervalDefs
→ “def”“(”time var“, ”ActivityName“, ”probability“)”

Ex > def(t1, Guard(a), 0.6)

Furthermore, our representation allows the stochastic de-
scription of a temporal relationship between two intervals. If
the relationship between two time intervals is flexible and has
multiple possibilities, we represent it as a list of all predicates
with non-zero probabilities. The probability associated with
each temporal relationship must be specified. The constraint
is that the sum of the probabilities of relationships between
any two time intervals must be 1. The following production
rule has been added to represent stochastic relationships.

TemporalRelationship
→ “stochastic(” TemporalRelationship “, ” prob“)”

By following the production rules of our CFG syntax, we
are able to represent group activities with a stochastic nature.
Both the uncertainties in sub-events and their relations are
described with our representation. The stochastic representa-
tion of the example of ‘group assault’ is provided below. The
representation is composed of the sub-event ‘attack’, which
is a ‘fight’ interaction followed by an ‘approach’, as well
as stochastic sub-events of ‘watch’ and ‘guard’. The actors
of these sub-events are described using member variables,
where G indicates the group performing the activity and S
indicate a sub-group of G. Stochastic temporal relationships
are described using time intervals as well.

Ex > GroupAssault(Group G, Person p1) = {
∀a in G.S, ∃b in G, ∃c in G
list( def(t1,Attack(a, p1)),

list( def(t2,Watch(b, p1), 0.5),
def(t3,Guard(c, door), 0.6))),

and( and( stochastic(during(t2, t1), 0.9),
stochastic(overlaps(t1, t2), 0.1)),

and( during(t3, t1), equals(t1, this)))
};

4 Recognition

This section discusses an algorithm to recognize high-level
group activities that have been represented stochastically us-
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GROUP_ACTIVITY_RECOGNIZE(Activity G) {
Detect a set of time intervals Wi of individual 

activities per sub-event Si; // Subsection 4.1.

List LC = CANDIDATE_DETECT(G); 

for j = 1 to sizeof(LC) {
Actors C1,…,n = LC(j);
Interval t = time interval of special variable ‘this’;
Group M* = GROUP_ESTIMATE(G, t, C1,…,n);

if (P(Gt|O) is high) return M*; // Equation (6).
}

}

Fig. 3 Pseudo codes describing our overall recognition algorithm. It
takes advantage of functions presented in Figures 6 and 9, detecting
groups with high probability of executing the activity.

ing our CFG syntax. Our recognition process conveys the hi-
erarchical structure of our group activity representation, rec-
ognizing group activities based on the recognition results of
their sub-events. We have defined the problem as a hierarchi-
cal Bayesian inference: we calculate the posterior probability
of the group activity given video observations. The goal is
to find an occurring time interval of the activity, which has
a high enough probability of group members satisfying the
activity structure (i.e. the representation).

We first discuss the base case of the recognition, activi-
ties of individuals, in Subsection 4.1. In Subsection 4.2, we
present the Bayesian formulation of our group activity recog-
nition problem. We describe how our system computes the
posterior probability of a group activity, given its starting time
and ending time (i.e. a time interval). Next, in Subsection
4.3, we present an algorithm to calculate candidate time in-
tervals which are guaranteed to have non-zero posterior prob-
abilities. A pool of candidate group members performing the
group activity is computed together with their corresponding
candidate interval. In Subsection 4.4, we evaluate each can-
didate time interval by searching for the set of group mem-
bers providing the highest probability within the interval. A
MCMC-based sampling methodology has been designed to
search for the approximate optimum solution. Overall recog-
nition algorithm is presented in Figure 3.

4.1 Activities of individuals

The base case of our hierarchical group activity recognition
is the recognition of individual activities. High-level group
activities are represented in terms of activities of individual
persons and other simpler group activities (which themselves
can be decomposed as well), suggesting that the recognition
of human actions and human-human interactions must be per-
formed first. We in our previous work have presented an ac-
tivity recognition methodology which is able to probabilisti-
cally recognize human-human interactions such as a ‘fight-
ing’ [21], and we take advantage of it in this paper.

In addition, we have adopted the tracking algorithm de-
veloped by Ryoo and Aggarwal [19]. The tracking algorithm

Fore-
ground

Head 
Detect

Boundi
ng box

Fig. 4 Low-level processing of the system.

is especially designed to handle several types of occlusions
among persons and other objects (e.g. pillars). It utilizes the
background subtraction as well as the head detection, as il-
lustrated in Figure 4. Tracked person blobs serve as low-
level features for human-human interaction recognition sys-
tem. Once a person is correctly segmented, color histograms
are used to classify the type of the person (e.g. policeman
vs. pedestrians), if needed. Viola and Jones’s detector [28] is
used for objects (e.g. laptop computer). Dynamic time warp-
ing (DTW) models are constructed to estimate motion of each
individual, where width/height ratio and the center position
of a bounding box are used as features for the DTW. These
results are passed to the human action and interaction recog-
nition system.

4.2 Hierarchical problem formulation

Here, we define the group activity recognition problem as a
hierarchical Bayesian inference. The objective of the group
activity recognition is to find the time interval t of the group
activityG, given a video observationO of groups performing
the activity. That is, we must calculate the posterior proba-
bility P (Gt|O), and deduce that the group activity occurred
only when it has a high value for the time interval t. What we
present in this subsection is a methodology to compute such
probability, assuming that t is provided (how to search for
such t candidates will be discussed in the next subsection).

Even with a fixed occurring time t, there are multiple pos-
sible groupings of persons in the scene. Therefore, the actor
group of the activity (i.e. the group members who performed
the activity) providing the highest probability must be identi-
fied to recognize the group activity.

P (Gt|O) = maxMP (Gt(M)|O)

= maxM
πt

G(M)

πt
G(M) + πt

¬G(M)

(1)

where

πt
G(M) = P (O|Gt(M))P (Gt(M)). (2)

M is a set of group members {m1,m2, ...,m|M |}.Gt(M) in-
dicates that group members M are performing the activity G
at the time interval t. P (O|Gt(M)) describes the probability
that the video observations are generated by the group activity
G performed by members M at time interval t. P (Gt(M)) is
the prior probability.

The recognition process must convey the hierarchical na-
ture of the representation. Group activities are composed of
several sub-events, as we have represented in Section 3. That
is, the system must posses an ability to make a hierarchical
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inference based on the detection of its sub-events, S1, ..., Sn.
The system must be able to detect the sub-events first, and
take advantage of the detection results for the calculation of
the probability as follows:

P (O|Gt(M)) =
∑

S
t1
1 ,...,S

tn
n

[P (O|M,Q, St1
1 , ..., S

tn
n )

P (St1
1 , ..., S

tn
n |Gt(M))]

(3)

where S1, ..., Sn are the sub-events of theG performed by the
corresponding actors, and Sti

i indicates whether the sub-event
Si occurred at the time interval ti or not. We assumed that
sub-event detection results St1

1 , ..., S
tn
n are strictly dependent

on the group activity Gt(M), and video observation O are
dependent on the sub-event detection results. Since a certain
sub-event may have a stochastic property (i.e. it may occur
and may not), we need to consider both cases of having the
sub-event and not having it, integrating their probabilities. Q
is the set of quantifiers associated with the member variables
of the group activity (i.e. P (Q|Gt(M)) = 1).

The similarity between the time intervals of the detected
sub-events and the stochastic representation of the group ac-
tivity are measured with P (St1

1 , ..., S
tn
n |Gt(M)). The confi-

dence of the detected sub-events corresponds to P (O|M,Q,
St1

1 , ..., S
tn
n ).

The structural similarity,P (St1
1 , ..., S

tn
n |Gt(M)), can fur-

ther be enumerated in terms of the relationship predicates de-
scribed in 3.2. If the detected sub-events of the group mem-
bers have a similar structure to the representation probabilisti-
cally, the probability of them satisfying the specified relations
must be high.

P (St1
1 , ..., S

tn
n |Gt(M)) =

∏
rel

P (rel|Sta
a , S

tb
b )∏

i

P (Sti
i |G

t(M))
(4)

where each rel(Sa, Sb) is the relationship between ath sub-
event and bth sub-event stated in our representation. These
terms are calculated per each combination (S1, S2, ..., Sn)
based on the grouping M , the sub-events Si, and their re-
lations rel stated in the activity representation.

The key of the hierarchical recognition is the computa-
tion of the probability of the observations given sub-events:
P (O|M,Q, St1

1 , ..., S
tn
n ). Particularly, a sub-event whose ac-

tor is described using a group member variable must be per-
formed by multiple members of the group M . This type of
sub-events needs to be performed by all members of the group
or any one member of the group depending on the quantifiers
associated with the member variables. Detection results of
the sub-event performed by all possible actors must be eval-
uated, and the overall probability must be computed while
considering the fact that the group members should execute
the sub-events and non-group members should not.

Assuming the conditional independence among sub-events,
we evaluate the similarity of the observation as follows:

P (O|M,Q, St1
1 , ..., S

tn
n ) =

∏
i

P (Oi|Sti
i (M))

=
∏

i

d · e−(|Ki−Ci|/|Ki|+|Li∩Ci|/|Ki|)
(5)

where Oi is the video regions related with the sub-event Si.
Ci is the set of all persons performing the sub-event while
satisfying the activity structure specified in the representa-
tion, Ki is the set of essential group members who must per-
form the sub-event, and Li is the set of non-members who
should not perform the sub-event. Thus, |Ki − Ci| indicates
the number of essential members who are not performing the
sub-event, and |Li∩Ci| specifies the number of anti-essential
individuals performing the sub-event. Similar to [23], we are
calculating the error ratio, which can be viewed as the dis-
tance between the optimal structure and the structure formed
byM . The optimal case is thatKi−Ci and Li∩Ci are empty
sets. Ci is dependent on the sub-event recognition results. On
the other hands, theKi and Li are dependent on the grouping
M , and the system must choose M so that the overall prob-
ability of the group activity is the maximum. We discuss the
process of deciding the sets Ki and Li further in Subsections
4.3 and 4.4. In the case of a sub-event whose actor is not a
group member, Ki always is a set with a single element (i.e.
an acting person). d is a constant which can be ignored when
computing P (Gt|O).

In summary, the posterior probability of a group activity
G occurring at the time interval t given video O is enumer-
ated as follows.

P (Gt|O) =
πt

G(M∗)

πt
G(M∗) + πt

¬G(M∗)
(6)

whereM∗ is the optimum group maximizing the term πt
G(M):

πt
G(M) = P (O|Gt(M))P (Gt(M))

= c ·
∑

S
t1
1 ,...,S

tn
n

[
∏
rel

P (rel|Sta
a , S

tb
b )

∏
i

P (Sti
i |G

t(M))

∏
i

d · e−(|Ki−Ci|/|Ki|+|Li∩Ci|/|Ki|)]

(7)

where c is a constant indicating the prior probability,P (Gt(M)).
We assume a uniform prior probability.

This implies that the computation of the posterior prob-
ability associated with each t involves searching of the opti-
mum group M∗. Given a pool of sub-event detection results
from multiple actors, the system must search for group mem-
bers M = {m1, ...,m|M |} maximizing the above probability
(7). However, searching for such a set of group members is a
traditional constraint satisfaction problem, which is known to
be NP-hard. A brute force searching will take an exponential
amount of time to find the optimum solution.

In order to find the solution (i.e. M∗) while avoiding the
exponential amount of computations, we in this paper are
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making the following approximations: Instead of fully enu-
merating the entire search space for M , we use a MCMC-
based sampling for the modeling of the probability πt

G(M).
The sample M with the maximum probability will be se-
lected for each t, which we will discuss further in Subsection
4.4.

Multi-group activities. In the above-mentioned Bayesian equa-
tions, we have assumed that the acting group of the activity
is only one. In the case of group-group interactions, there are
two or more groups involved in the activity. In order to rec-
ognize a group-group interaction, we need to search for two
groupsM1 andM2 jointly, which provide the maximum pos-
terior probability P (Gt(M1,M2)|O). Sub-events of group-
group interactions include interactions between members of
two groups described using two member variables. In this
case, theCi,Ki, and Li, which are needed to calculate P (Oi|
Sti

i (M1,M2)), become sets of pairs of group members from
M1 and M2. Ci indicates pairs of actors who are performing
the sub-event Si, Ki is a set of essential actor pairs, and Li

is a set of anti-essential actor pairs. Similar to the case of a
single-group activity, the criteria of the Ki and Li selection
given M will be discussed in Subsection 4.4.

4.3 Candidate time interval detection

The goal of the group activity recognition is to find the in-
terval t giving a high probability. A brute force method to
find such an interval is to evaluate all possible T 2 intervals
where T is the number of frames observed, which is com-
putationally inefficient. Our approach is to propose a number
of promising candidate intervals without spending too much
computational time, and evaluate only those candidates in de-
tail for the final recognition. In this subsection, we present a
methodology to compute candidate time intervals for a group
activity.

We focus on the fact that the sub-events’ temporal con-
straints must be satisfied in order for the group activity to
occur. That is, a time interval with a grouping that makes
its members to violate the constraints of the activity has a
zero posterior probability, and must be discarded. The al-
gorithm presented throughout this subsection hierarchically
finds the group activity’s valid time interval candidates based
on the temporal structure matching. In addition, individuals
who performed the sub-events are computed for each valid t.
These individuals form a pool of group member candidates,
which will be passed to the algorithm in Subsection 4.4 to
search for the approximate optimal grouping.

Focusing on the fact that not many persons in the scene
satisfy the temporal constraints of the activity, we are pruning
temporally inconsistent time intervals of the group activity. A
pool of member candidates computed for each t is guaranteed
to be a superset of the group with a non-zero probability of
performing the activity. That is, the algorithm provides an up-
per bound per group that satisfies the temporal relationships
of the activity representation at least with a small probability.

t1 t2

t3

th-
is

during(t2,t1)

during(t3,t1)

equals(t1, this)
[10, 44] [14, 23]

[20, 34]

overlaps(t1,t2)
{m1, m2, m3} {m4}

{m5, m6}

Fig. 5 An example relationship tree of the stochastic representation
of the ‘group assault’. Example time intervals assigned are specified
on top on the nodes, and the pool of actors who performed the sub-
event are listed below the nodes.

An important fact is that our representation of a group ac-
tivity may contain stochastic sub-events, indicating only a po-
tion of them will occur during the activity. This implies that
each activity has multiple possible structures, having a dif-
ferent number of sub-events and different relations. The sys-
tem needs to consider all of the possible structures: we apply
our algorithm to obtain valid time intervals and their group
candidate supersets to multiple possible structures of the ac-
tivity. The algorithm is repeatedly applied to each subset of
the stochastic sub-events together with the set of all non-
stochastic sub-events. Relationships of sub-events not selected
are ignored. Since there are only a limited number of stochas-
tic sub-events, the number of possible structures is tractable:
2z where z is the number of stochastic sub-events which is a
small constant in general.

Clustered time intervals. Here, we define the concept of the
clustered time interval, which describes an occurring time of
a sub-event whose actors are represented in terms of group
member variables. In the case of a sub-event performed by a
group member, multiple time intervals are generated by vari-
ous group members. In order to construct one representative
time interval describing all of them, we cluster time intervals
of the same actions and interactions ignoring the actors. The
clustering is done based on the time intervals’ starting and
ending times. A clustered time interval is treated as a single
time interval, so that the sub-event’s relationship with others
can be analyzed.

Clustered time intervals provide an efficient approxima-
tion for the calculation of the group members satisfying the
temporal relationship of the activity. When calculating the
structural similarity P (St1

1 , ..., S
tn
n |Gt(M)), the ratio of each

time interval in the clustered interval satisfying the proposed
relationship by it is considered to measure the overall simi-
larity.

Temporal constraint matching. The goal of the temporal
constraint matching is to assign a time interval (which maybe
a clustered time interval) to each sub-event, so that the tempo-
ral constraints described using the predicates are satisfied. A
time interval per sub-event must be chosen, while satisfying
the representation of the group activity. The result is a time
interval candidate of the group activity (i.e. t), which is com-
puted for each combination of the sub-event assignments.

The problem of assigning detected time intervals to sat-
isfy temporal relationships is a traditional constraint satisfac-
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tion problem itself. An activity can occur multiple times, sug-
gesting that each sub-event has multiple possible time inter-
val assignments. Therefore, if r is the average number of time
intervals of one sub-event and n is the number of sub-events,
there are rn possible combinations of time interval associa-
tions on average. The algorithm must search for combinations
that satisfy the temporal relationship of the represented group
activity, so that the time interval candidates for the group ac-
tivity are obtained.

In order to detect such combinations efficiently without
spending an exponential amount of computations, we model
the relationship of a group activity as a set of trees: We first
enumerate relationships to make them in DNF (disjunctive
normal form). Each clause of DNF is a conjunction of tem-
poral relations, and we construct an undirected graph for each
clause where variables indicating time intervals are nodes and
predicates between them are edges. Figure 5 shows an exam-
ple relationship tree of the stochastic group activity ‘group
assault’. In the case when temporal relationships for a group
activity contain a cycle, our system breaks the cycle (i.e. con-
verts to a tree) to perform the recognition process, which is
an approximation of the actual temporal constraints.

With a tree structure assumption of temporal relationships,
searching for a valid combination can be done in polynomial
time. Figure 6 shows a detailed pseudo code of our time inter-
val detection algorithm. For each tree, our algorithm searches
for valid combinations by assigning time intervals to nodes
(i.e. time variables) from the root to the leaves. Only when
a time interval of a child node satisfies the relationship with
any one of the time intervals assigned to the parent node, the
interval can be assigned to the child node. In the case of a
stochastic relation with multiple possibilities, a time interval
is assigned to the child node if any relationship among the
possible relations is satisfied with a time interval of the parent
node. The probability associated with the stochastic relation-
ship is ignored at this point, and it will be evaluated in a later
stage when we search for the group M∗ with the maximum
posterior probability.

The algorithm treats sub-events done by any persons as
valid candidate time intervals as long as they satisfy the tem-
poral constraints. However, in order for a group activity to oc-
cur, the sub-events associated with the same member variable
must be done by the same person. Therefore, our system dis-
cards time interval combinations which violate the constraint
that ‘sub-events associated with the same member variable
must be done by the same person’.

Once valid time intervals of sub-events are assigned, time
intervals of a group activity itself, t, can be computed by
calculating the range of the special time interval ‘this’. This
will become the result time interval of the group activity, if
the system later decides that it has a high posterior proba-
bility. The computation of ‘this’ also suggests a hierarchical
recognition. Figure 7 shows an example hierarchical recogni-
tion process enabled with our temporal constraint matching
algorithm. The time complexity of the overall algorithm is
O(r2 + b), where b is the total number of combinations satis-
fying temporal constraints.

CANDIDATE_DETECT(Activity G) {
Tree D = Temporal structure tree of G, composed of 

{i = 1, …, n} nodes;
Node r = root node of D, always corresponding to the

special time interval `this’;

ASSIGN(r);
List LC = CANDIDATE_MEMBERS(V1,…,n, A1,…,n);

return LC;
}

ASSIGN(Node i) {
Node p = i’s parent;
Intervals Vi = {}; Actors Ai = {};

Intervals Wi = List of all possible time intervals that 
can be assigned to node i;

Actors Bi = {};
for (each wi in Wi) {

bi = an actor of wi; // bi can be a set of actors, if 
wi is a clustered interval.

add bi to Bi;
}

if (p==null) {Vi = Wi; Ai = Bi;}
else for j = 1 to sizeof(Vi)

for k = 1 to sizeof(Vp) 
if(Wi(j) and Ap(k) satisfies temporal relation)

{add Wi(j) to Vi; add Bi(j) to Ai;}

for (each node c who is a child of i)
(Vc, Ac) = ASSIGN(c);
for j = 1 to sizeof(Vi)
if (no Vc(k) satisfies temporal relation with Vi(j))

{remove Vi(j) from Vi; remove Ai(j) from Ai;}
return (Vi, Ai);

}

CANDIDATE_MEMBERS(V1,…,n, A1,…,n)
{

List LC = {};
for (each combination (a1, a2, …, an) ∈ (A1, A2, …,An))
if ((a1, a2, …, an) satisfies temporal relations)

add (a1, a2, …, an) to LC;
return LC;

}

Fig. 6 Pseudo code of the detecting group member candidates that
satisfy temporal constraints.

Group member candidates. As a result of the algorithm, a
set of valid time interval candidates is obtained. For each can-
didate t, we also compute clustered time intervals assigned to
group-related sub-event. The actors of a sub-event’s clustered
time interval form a pool of candidate group members. The
actors of the clustered time intervals, which have been ver-
ified to satisfy the temporal constraints using the algorithm
proposed above, suggest the upper bound of the grouping. In
the case when a sub-event is an interaction of members of
two different groups, the pairs of actors of the clustered in-
terval form a pool of candidate pairs to be assigned jointly to
the two groups. These actors form a superset of the optimal
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{m4}

{m5, m6}

{m1, m2, m3}

t1 t2

t3

th-
is

during(t2,t1)

during(t3,t1)
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is

meets(t2,t1)equals(t1, this)
[10, 40] [1, 10]

overlaps(t2,t1)

Attack(m1)
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{m2}{m2}
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is
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is
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{m1}
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is
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th-
is
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{m1}

[10, 40]
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th-
is

{m1}

[1, 10]

th-
is

Fight(m2)

{m2}

[13, 44]
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th-
is

{m2}
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th-
is

Fight(m3)

{m3}
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Approach(m3)

th-
is
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Stand(m5)

th-
is

{m5}

[4, 23]

Guard(m4)

th-
is

{m4}

[20, 34]

Fig. 7 An example hierarchical process tree of the activity ‘group assault’. Each node with a box shape corresponds to the activity, and it
contains its relationship tree. We are able to observe that the root node contains the tree described in Figure 5. Edges connecting box nodes
specify the hierarchy.

grouping given the current time interval combination. Each
clustered time interval generates one superset, and we denote
the candidate superset of the sub-event Si as Ci.

For example, in the case of the ‘group assault’, there are
three clustered time intervals generated by sub-events ‘at-
tack’, ‘watch’, and ‘guard’:Cattack,Cwatch, andCguard. Once
the combination of the time intervals satisfying the temporal
relationship of the ‘group assault’ is found (e.g. Figure 5),
the pool of candidate actors are decided for each sub-event.
In Figure 5, the persons {m1,m2,m3} performed attacking
in the time interval [10, 44], the person m4 was guarding in
[14, 23], and the persons {m5,m6} was watching in [20, 34].
The result pools are: Cattack = {m1,m2,m3}, Cwatch =
{m4}, and Cguard = {m5,m6}. Any subset of these sets
satisfies the temporal relationships.

4.4 MCMC-based group estimation

In this subsection, we present a methodology to find the op-
timal group M∗ which provides us the maximum posterior
probability for each time interval candidate t. We have de-
signed an algorithm using a Markov chain Monte Carlo (MCMC)
technique to search for M∗. The Markov chain Monte Carlo
(MCMC) is a methodology to obtain samples following a
particular probability distribution. The MCMC sampling is
particularly useful when the domain space is large, since the
enumeration of an entire distribution is intractable in such
cases. For example, in our case, there are 2s possible assign-
ments for each group M where s is the number of persons in
the scene. Maintaining samples obtained from the distribution
using MCMC provides a good approximation of the distribu-
tion model, and it has been applied to several computer vision
problems including object detection and tracking [12,23].

More specifically, we use the MCMC to solve the M∗:

M∗ = argmaxMP (Gt(M)|O) = argmaxM πt
G(M). (8)

Our search space is a multi-dimensional space, having s di-
mensions. Each dimension has a discrete value, either 0 or 1,

where 0 indicates that the actor corresponding to the dimen-
sion did not participate in the group activity and 1 indicates
that the actor participated. In order to find theM∗, we sample
the distribution πt

G(M) of Equation (7) assuming the uniform
prior probability.

The sets Ki and Li in Equation (7) are dependent on
the grouping M , while Cis are provided from the previous
subsection. Since each sub-event is executed stochastically,
|Ki−Ci| and |Li ∩Ci| need to be computed considering the
probability associated with each member (or member-pair)
performing the sub-event. We calculate the expectation of the
number of set members, based on the sub-event detection re-
sults P (Sti

i (k)|Oi).

|Ki − Ci| =
∑

k∈(Ki−Ci)

E[Sti
i (k)|Oi]

|Li ∩ Ci| =
∑

l∈(Li∩Ci)

E[Sti
i (l)|Oi]

(9)

where k and l are the individuals performing the sub-event.
The terms

∏
rel P (rel|Sta

a , S
tb

b ) and
∏

i P (Sti
i |Gt(M))

in Equation (7) are also calculated depending on M . The
clustered time intervals of the sub-events are dependent on
the members of M . The spatial relationships need to be mea-
sured based on the spatial distances between each members
of M . Thus, the overall probability of πt

G(M) is dependent
on the grouping M , and we must sample them to find the
optimum solution.

A Metropolis-Hastings algorithm with reversible jumps is
applied to obtain samples following πt

G(M). The probability
of the samples will be compared later to find the sample with
the maximum value. The following shows the dynamics of
the sampling using the algorithm.

a =
πt

G(M ′) · q(M ′,M)

πt
G(M) · q(M,M ′)

(10)

The transition probability is as follows:P (M,M ′) = min(1, a).
After each transition, the newM is selected as a sample of the
πt

G(M). The q(M,M ′) is the proposal probability, which we
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model to have a uniform probability of selecting one of the
discrete moves described below. Broadly, there are two types
of moves: the move of adding a person to the group M , and
the move of removing a group member from the group.

– Add a group member m from a pool of sub-event actors
Ci calculated in Subsection 4.3, to M . There are multiple
pools, if there exist more than one clustered time inter-
vals. Select m ∈ M c randomly among all of those pools
of Ci. In the case when the sub-event is an interaction be-
tween two group members, select a pair (m1,m2) from
Cis and add it to the groups M1 and M2 respectively.

– Remove a group member m from the current M . In the
case of an interaction, select a pair (m1,m2) and remove
them from the groups M1 and M2 respectively.

– If a group member is added into a group which is a sub-
group of another group, then the member is added to this
group as well. Similarly, if a member is being removed
from a super-group, it must be removed from all its sub-
groups as well.

In order to compute πt
G(M), the sets Ki and Li must be

decided. The set Ki is chosen for each sub-event Si, and it
describes the necessary actors of the sub-event. That is, Ki

describes a set of group members who are required to perform
the sub-event, in order to satisfy the structure of the group
activity. Similarly, the set Li contains the persons who should
not perform the sub-event. All elements of the set Li are non-
members of the group. The intuition behind the consideration
of Li is that if a person is not in the group, he/she is not
likely to perform the sub-event satisfying the spatio-temporal
structure of the group activity.

For example, in the case of ‘group marching’, there is
only one member variable, and the sub-event of ‘move’ needs
to be performed by all members corresponding to the mem-
ber variable. If the current M is {m1,m2,m3} and Cmove is
{m1,m2,m4} for ‘group marching’, the Kmove and Lmove

is as follows: Kmove = {m1,m2,m3}, and Lmove = {m4}.
This indicates that all {m1,m2,m3}must be ‘moving’ while
m4 should not, if M is the optimal group (which is not the
case).

The selection of Ki and Li depends on the number of
member variables of the sub-event (i.e. action vs. interac-
tion) and the types of quantifiers (i.e. ∃ and ∀) associated with
them. In the case when a sub-event needs a pair of actors (i.e.
an interaction), the Ki and Li are composed of the essen-
tial and anti-essential actor pairs. Figure 8 shows each case
of interaction sub-events. Edges between members shows an
example of necessary pairs (i.e. Ki) for the group activity
structure to be satisfied. We categorize the cases into 6 types
(2 for actions and 4 for interactions), and discuss methodolo-
gies to compute Kis and Lis given M .

Group action case 1: ∃. This is the case where only one
member of a group needs to perform the sub-event. Any one
member with the maximum probability of executing the sub-
event is chosen.

Ki = {k | k = argmaxk∈MP (Sti
i (k)|Oi)}

Li = {}
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Fig. 8 Example Kis in 4 cases of group-group interactions.

Group action case 2: ∀. All members of the group must per-
form the sub-event. Therefore,

Ki = {k | k ∈M}
Li = {l | l ∈Mc}

Multi-group activity case 1: ∃ ∃. In multi-group activity
cases, the goal is to search the optimal group pair (M1∗,M2∗)
jointly. Therefore, Ki and Li contain pairs of actors com-
puted based on M1 and M2.

Ki = {(k1, k2) | k1 ∈M1 ∧ k2 ∈M2∧
argmaxP (Sti

i (k1, k2)|Oi)}
Li = {}

Multi-group activity case 2: ∀ ∃.

Ki = {(k1, k2) | k1 ∈M1∧
k2 = argmaxk2∈M2P (Sti

i (k1, k2)|Oi)}
Li = {(l1, l2) | l1 ∈M1c}

Multi-group activity case 3: ∃ ∀.

Ki = {(k1, k2) | k2 ∈M2∧

k1 = argmaxk1∈M1

∏
k∈M2

P (Sti
i (k1, k)|Oi)}

Li = {(l1, l2) | l2 ∈M2c∧

l1 = argmaxl1∈M1

∏
k∈M2

P (Sti
i (l1, k)|Oi)}

Multi-group activity case 4: ∀ ∀.

Ki = {(k1, k2) | k1 ∈M1 ∧ k2 ∈M2}
Li = {(l1, l2) | l1 ∈M1c ∨ l2 ∈M2c}

Furthermore, we defineK ′i andL′i used for the calculation
of P (Oi|¬Sti

i (M)):

K′i = {}, L′i = {l | l ∈Mc}

OnceM∗ is computed based onKis and Lis, it is applied
to P (Gt(M∗)|O) to calculate the posterior probability of the
group activity occurred given the observation. Only when the
probability P (Gt(M∗)|O) is high, our system decides that
the activity G occurred at the time interval t with its group
members M∗. Figure 9 shows a pseudo of our MCMC algo-
rithm.
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GROUP_ESTIMATE(Activity G, Interval t, Actors C1,…,n) {
Group M = {};
Group M* = {};

do {
Randomly select transition move tm;
Group M’ = apply tm to M;

for i = 1 to n (i.e. # of sub-events)
(Ki’, Li’) = compute for M’, based on group 

activity cases of Subsection 4.4

Compute πt
G(M) with all Ki, Li, Ci;   // Equation (7).

Compute πt
G(M’) with all Ki’, Li’, Ci;

a = πt
G(M’) / πt

G(M) * c1; // c1 is a constant.
r = random number between 0 and 1;
if (r < min(1, a)) {

M = M’;
if (πt

G(M) > πt
G(M*)) M* = M;

}
} while stabilized;

return M*;
}

Fig. 9 A pseudo code of our MCMC algorithm for finding groups
with a maximum posterior probability.

5 Experiments

We implement the system presented in this paper, and test it
to recognize high-level group activities such as ‘group steal-
ing’ and ‘group assault’. Notably, we are using CCTV videos
that have been downloaded from YouTube as well as videos
that we have taken in various environments. We implement
and test our group activity recognition system for various
types of group activities, while measuring the performance
of our stochastic system compared to our previous determin-
istic recognition approach.

We have represented and recognized eight different types
of group activities. ‘Group move’, ‘group carry’, ‘group carry
by signal’, ‘group fighting’, ‘intta-group fighting’, ‘group steal-
ing’, ‘group arresting’, and ‘group assault’ are the activities
tested. ‘Group move’ indicates a group of people moving in
the same direction and ‘group carry’ describes a group of peo-
ple carrying a table or other large objects. We already have
defined and represented ‘group carry by signal’ and ‘group
fighting’ in Section 3.2. ‘Intra-group fighting’ is an intra-
group version of group fighting. ‘Group stealing’ is a com-
plex group-group interaction where one of thieves is stealing
an object (e.g. laptop) while other thieves are distracting a
group of owners of the object. ‘Group arresting’ indicates the
situation where policemen are arresting a group of criminals.
‘Group assault’, which we discussed its representation in 3.3,
is a highly stochastic group activity of people attacking a per-
son with lots of variations.

A total of 45 sequences, ten videos for the ‘group as-
sault’ and five videos for each of the other group activities,
are tested to measure the performance. Videos downloaded
from YouTube as well as videos taken with total of six par-

ticipants in various environments have been collected. The
videos were taken in 15 frames per second in the resolution
of 320 * 240. The duration of a video varies depending on
the type of the activity, ranging from 3 seconds to more than
30 seconds. As a result, approximately 12000 frames were
obtained from 45 sequences for the testing.

We have used 5 separate videos sequences taken in a sim-
ilar environment for training atomic actions of the human-
human interaction ‘fighting’. Note that the other individual-
level interactions (e.g. taking an object, approaching, ...) are
represented solely in terms of spatial relations among persons
and objects, and thus do not require training. The object de-
tector (e.g. head detector) also has been trained with separate
training images from similar environments. The representa-
tion of group activities is encoded by a human expert, follow-
ing our representation syntax. For example, the representa-
tion of ‘group stealing’, a group activity with 3 quantifiers, is
as follows:

GroupStealing(Group Thieves, Group Owners) = {
∃a in Thieves, ∀b in Owners, ∃c in Thieves,
list( def(t1,Approach(Thieves, Owners)),

list( def(t2,TakeObject(a)),
def(t3,Distract(c, b)))),

and( equals(t2, this),
and(before(t1, t2), during(t2, t3)))

};

Once the low-level part of our system is trained and the repre-
sentation is encoded by the human expert, our group activity
recognition system behaves fully automatically. The system
was tested on all 45 sequences.

In order to make the recognition process more reliable, we
made all representations (including the above ‘group steal-
ing’ representation and other representations presented in 3.2)
stochastic. Because of noisy observations and erroneous low-
level components, some sub-events may not be detected cor-
rectly. We gave a small probability to the case where a sub-
event is not occurring P (¬Sti

i |Gt(M)), so that the overall
probability of the group activity is high even when a portion
of sub-events is not detected. The stochastic relationship be-
tween sub-events where described in the interaction ‘group
assault’ only. For the probabilistic inference, the probability
of each sub-event occurring when no group activity is present
must be given as well: P (Sti

i |¬Gt(M)). Our current system
assumes that this has been correctly estimated and provided
by a human expert or an automated learning system.

Figures 11 and 12 show the example sequences of group
activities which our system successfully recognized. Bound-
ing boxes have been drawn for each person’s head or en-
tire body, depending on the features used by the recogni-
tion system. Groups detected as a result of our algorithm
are indicated using the color of bounding boxes. Figure 10
shows example time interval recognition results of the top-
most sequence of Figure 11, the YouTube downloaded video
of ‘group stealing’.

Table 2 illustrates the final recognition accuracy of our
algorithm. The type of each group activity is specified: GA
stands for ‘group action’, GP for ‘group-persons interaction’,
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this = GroupStealing(G1, G2)

t3 =Distract(c, b)t1 =Approach(G1, G2)

t2 =TakeObject(a)

12 29 164 201 282

Fig. 10 Example time interval detection results of ‘stealing’.

Table 2 Recognition accuracy of the system

Activity\System Type Qntfs. Prev. system Our system

Move GA ∀ 5/5 5/5

Carry GA ∀ 5/5 5/5

Carry by signal GP ∀ 4/5 4/5

Fight GG ∀∃ 3/5 5/5

Fight IG ∃∃ 3/5 3/5

Steal GG ∃∀∃ 4/5 5/5

Arrest GG ∀∃ 4/5 4/5

Assault GG ∀∃∃ 5/10 8/10
total 33/45 39/45

GG for ‘group-group interaction’, and IG for ‘intra-group in-
teraction’. Types of quantifiers attached to member variables
of each activity are also listed. The performance is compared
with the deterministic version of our system, presented in
our previous paper [20]. The previous system maintains de-
terministic representations of group activities, and applies a
heuristic algorithm to recognize them.

Only true positive rates are shown in Table 2. False posi-
tive rates were almost 0 in all cases with both systems, since
recognizing multiple sub-events satisfying the specific rela-
tionship by ‘mistake’ is extremely unlikely. The recognition
accuracy depends on inherent uncertainties and difficulties of
the structures of the activities. Our stochastic system over-
comes the limitations of the previous system, by making a
hierarchical Bayesian inference. We are able to observe that
our system performs superior to the previous method. The
previous method did not perform well especially when rec-
ognizing ‘group assault’, since they are not able to handle
variations in the activity structure.

6 Conclusions

We have presented a novel representation and recognition al-
gorithm for complex high-level group activities. The techni-
cal contributions of this paper are the stochastic representa-
tion scheme to represent various types of group activities, and
the new hierarchical algorithm for the probabilistic recogni-
tion. We presented recognition methodology for group activ-
ities with complex temporal, spatial, and logical structures,
which has not been studied in depth previously.

In the future, we plan to study an automated learning
of group activities. Currently, the representation of activi-
ties, including the probability associated with the occurrences
of sub-events, are encoded manually by human experts. The

stochastic representation of human activities suggests that au-
tomated learning is able to benefit the system with more ac-
curate modeling of the activities.
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