
Personal Driving Diary:
Automated Recognition of Driving Events from First-Person Videos

M. S. Ryooa, Sunglok Choi1b, Ji Hoon Joung1c, Jae-Yeong Lee1b, Wonpil Yub

aMobility and Robotic Systems Section, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
bRobot Research Department, Electronics and Telecommunications Research Institute, Daejeon, South Korea 305-700

cRobotics Research Department of Engine & Machinery Research Institute, Hyundai Heavy Industries Co., Ltd., Yongin, South Korea 446-716

Abstract

In this paper, we introduce the concept of personal driving diary. A personal driving diary is a multimedia archive of a person’s
daily driving experience, describing important driving events of the user with annotated videos. This paper presents an automated
system that constructs such multimedia diary by analyzing videos obtained from a vehicle-mounted camera. The proposed system
recognizes important interactions between the driving vehicle and the other actors in videos (e.g., accident, overtaking, ...), and
labels them together with its contextual knowledge on the vehicle (e.g., mean velocity) to construct an event log. A decision tree
based activity recognizer is designed, detecting driving events of vehicles and pedestrians from the first-person view videos by
analyzing their trajectories and spatio-temporal relationships. The constructed diary enables efficient searching and event-based
browsing of video clips, which helps the users when retrieving videos of dangerous situations. Our experiment confirms that the
proposed system reliably generates driving diaries by annotating the vehicle events learned from training examples.

Keywords: personal driving diary, driving activity recognition, first-person event detection, lifelogging

1. Introduction

Personal driving diary is a multimedia archive of a person’s
daily driving experience. It illustrates important driving events
of the user, providing recorded videos of the events and describ-
ing when and where the events have occurred. Figure 1 shows
an example driving diary. The primary goal of such driving di-
ary is to enable an efficient searching of video segments with
important vehicle events (e.g., accidents), and to summarize a
driving history of the user for the statistical analysis of his/her
driving habits and patterns (e.g., dangerous overtaking and sud-
den stops). The user will be able to retrieve and examine an
event log (i.e., a diary) with videos taken from his/her vehicle,
and use it for various purposes.

This paper presents an automated system that generates such
multimedia diary by analyzing videos obtained from a vehicle-
mounted camera. The objective is to construct a system that au-
tomatically annotates and summarizes obtained driving videos,
enabling fast, efficient, and used-oriented browsing (and anal-
ysis) of events. The trend of mounting video cameras on vehi-
cles is growing rapidly (e.g., ‘black box cameras’ for accident
recording [1]), and most of vehicles will equip cameras observ-
ing the front in the near future corresponding to the societal
interest. Our motivation is to provide a personal summary of
vehicle events by utilizing such cameras, and develop an effi-
cient way of retrieving important video segments.

In this paper, we design and implement a novel system in-
tegrating various computer vision components including visual

Email address: mryoo@jpl.nasa.gov (M. S. Ryoo)
1These three authors contributed equally to the paper.

Video (Temporal)

Map (Spatial)

…

 Overtake
- Time: 10:21:31–10:21:33
- Location: (2.1, 0.1) km
- Note
 Avg. Speed: 60km/h

…

 Sudden Stop
- Time: 10:42:18–10:42:21
- Location: (3.8, -3.1) km
- Note
 Cause: Human
 Avg. Speed: 15km/h
 Stop Distance: 0.01km

…

…

 Overtake
- Time: 10:21:31–10:21:33
- Location: (2.1, 0.1) km
- Note
 Avg. Speed: 60km/h

…

 Sudden Stop
- Time: 10:42:18–10:42:21
- Location: (3.8, -3.1) km
- Note
 Cause: Human
 Avg. Speed: 15km/h
 Stop Distance: 0.01km

…

Event Log (Semantic)

Figure 1: An example personal driving diary.

odometry, pedestrian detection, vehicle detection, tracking, and
activity-level event recognition. Several existing computer vi-
sion methodologies are extended for the first-person view video
analysis, and are combined with our newly designed activity
recognition component, reliably generating video diaries for the
users. Our system first estimates the trajectory of the driving ve-
hicle using visual odometry, and computes trajectories of other
pedestrians and vehicles by detecting/tracking them. Next, the
system captures salient atomic-level movements (e.g., deceler-
ating) from the trajectories, and further analyzes interactions
between vehicles and pedestrians. Driving events including
sudden stopping and overtaking are annotated from the video
as a result, and they are provided as a driving log (i.e., personal
driving diary) for the driver.

A notable contribution of this paper is the introduction of

Preprint submitted to Computer Vision and Image Understanding November 22, 2013

the concept of personal driving diaries. We present a new idea
that everyday driving experience of drivers can be annotated
and archived, and discuss methodologies for the generation
of such event-based personal driving diaries from first-person
view videos. The personal driving diary constructed by our
system will enable efficient searching (and retrieval) of vehi-
cle events. Even though there has been previous attempts to
apply computer vision algorithms for vehicle-mounted cameras
(e.g., [2]), a system to understand vehicle activities (i.e., events)
from them has not been studied in depth previously. In addition,
our event recognition methodology which enables analysis of
multiple object trajectories from the first-person viewpoint will
benefit other types of life-logging systems where object trajec-
tories are important (e.g., cooking).

More specifically, this paper aims to introduce and ad-
dress the new problem of first-person driving video analy-
sis/understanding. The paper attempts to provide answers to
the question of what computer vision components are necessary
and how they should be designed/extended/implemented for the
understanding such first-person videos. Each of our compo-
nents is designed to best capture dynamics of driving interac-
tions, and the experimental results show their effectiveness. We
particularly focus on the recognition of semantically meaning-
ful driving events from the first-person view videos, which has
been very limitedly explored in previous works.

This paper extends our previous work on personal driving di-
ary [3] by providing more detailed descriptions of the proposed
approaches, incorporating better algorithms, extending them,
and discussing additional experiments to evaluate the perfor-
mance of each vision component.

2. Related Works

Life-logging: Life-logging systems using wearable cameras
have been developed to record a person’s everyday experiences
[4–6]. Hori and Aizawa [4] utilized multiple sensors (e.g.,
cameras, GPS, brain-wave analyzer, ...), automatically logging
videos based on various keys from systems components such as
a face detection and a GPS localization. Doherty et al. [6] also
used a wearable camera. They have classified each image scene
(i.e., frame) into a number of simple event categories using im-
age features (e.g., SIFT), showing a potential that videos can be
annotated based on user events.

However, most of previous life-logging systems focused on
the elementary recording of entire video data [7], instead of
constructing a semantic diary composed of videos of specific
events. Previous systems attempted to construct general pur-
pose achieves by relying on the index created by extracting sim-
ple image-based features, rather than performing a video-based
analysis to interpret activity-level (i.e., complex) events. There
also was an attempt to label location-based activities from GPS
data [8], but it did not focus on semantic analysis of visual data
(i.e., videos).

Human activity recognition: Human activity recognition is
a computer vision methodology essential for analyzing videos
[9]. Particularly, activity recognition methodologies utilizing

Geometry Component

Detection Component

Tracking
Component

Event Analysis
Component

Visual Odometry

Ground Homography
Estimator

Human Detector

Vehicle Detector

…

Video

Time intervals

Event classifier

Trajectories

Figure 2: An overall architecture of our driving diary system.

spatio-temporal features from videos have obtained a large
amount of interests [10–12]. In addition, hierarchical ap-
proaches have been studied to recognize various types of activ-
ities involving multiple humans and objects [13, 14]. However,
even though previous systems successfully recognized events
from videos with various settings (e.g., backgrounds), little at-
tempts have been made to analyze activity videos from moving
first-person view cameras. Few works attempted to recognize
activities from wearable cameras recently [15], but they were
not designed to detect high-level interactions from driving en-
vironments either.

Vehicle cameras: As described in the introduction, increas-
ing number of vehicles are equipping cameras for safety and
accident recording purposes these days [1]. In addition, vari-
ous pedestrian detection algorithms have been developed and
adopted for vehicle-mounted cameras [2], in order to support
safer driving of drivers. However, most of the previous works
limited themselves to accident prevention using simple per-
frame detection, and did not attempt to analyze events from the
videos. More specifically, previous works with vehicle cam-
eras focused mainly on pedestrian detection and lane detection
from image frames, rather than semantically analyzing ongoing
events from video data.

3. Framework

In this section, we present an overall framework for our per-
sonal driving diary system. The idea is to provide a complete
system architecture, so that an implemented system may be in-
stalled on a mobile camera system (e.g., a black box camera or
a smart phone) to annotate videos taken from a driving vehicle.
Various computer vision techniques are designed and adopted
to extract semantic information from first-person view videos
containing vehicle events.

Our driving diary system is composed of four components:
geometry component, detection component, tracking compo-
nent, and event analysis component. These components obtain
visual inputs (i.e., videos) from the camera and interact with
each other to analyze events involving the driving vehicle itself,
the other appearing vehicles, and pedestrians. Figure 2 illus-
trates the overall architecture.

2

The geometry component uses a visual odometry algorithm
to measure the ego-motion of the camera. That is, the trajec-
tory of the driving vehicle is obtained with respect to its initial
position, enabling our diary to record the vehicle’s relative lo-
cation on the map and provide ego-motion information to the
other components. The detection component detects pedestri-
ans and vehicles at every image frame of the input video. In
addition, based on the geometrical structure of the scene ana-
lyzed by the geometry component, it estimates locations of the
detected objects in metric coordinates (relative to the starting
location). The tracking component applies object tracking al-
gorithms to obtain trajectories of the detected pedestrians and
vehicles.

Finally, our event analysis component annotates all ongoing
events from continuous streams of videos using the vehicle’s
ego-trajectory from the geometry component and the other tra-
jectories from the tracking component. High-level events such
as ‘overtaking’ and ‘sudden stopping caused by pedestrians’
are recognized hierarchically using trajectory-based features.
Our event detection component is designed to probabilistically
consider spatio-temporal relationships among obtained vehi-
cle/pedestrian trajectories. Events are annotated together with
the driving vehicle’s velocity and other contextual information.

As a result, our system converts an input driving video into
a diary of semantically meaningful events. A user interface has
been designed so that the user retrieves videos of interesting
events from the diary. An interface to add new event to be
annotated (by providing additional labeled training videos) is
supported by our system as well. In the following sections, we
discuss each of the components in detail.

4. Geometry Component

The geometry component derives geometric information
from driving image sequences: (1) visual odometry estimates
ego-motion of the camera-mounted vehicle, and (2) ground
plane homograpy allows conversion of positions of detected ob-
jects (e.g., pedestrians or vehicles) on a road from image coordi-
nates to metric coordinates. The goal is to obtain the trajectory
of the driving vehicle and to enable computation of those of the
other appearing pedestrians/vehicles in metric coordinates.

4.1. Visual Odometry

Monocular visual odometry is adopted to generate a trajec-
tory of a camera mounted on our vehicle. That is, we compute
an approximate trajectory of the driving vehicle based on ego-
motion displayed in its videos. The idea is that, even though vi-
sual odometry suffers from drift errors similar to the other dead
reckoning techniques by its nature (in contrast to GPS-based lo-
calization), it is able to provide accurate/reliable piecewise lo-
cal trajectory information for our driving event analysis compo-
nent. Our visual odometry approach is composed of five steps:
feature extraction/matching, outlier rejection, relative pose es-
timation, scale estimation, and motion accumulation. Figure 3
describes each step with its implemented techniques.

Feature Extraction/Matching

Outlier Rejection

Relative Pose Estimation

Motion Accumulation

epipolar 3-point algorithm
RANSAC + Sampson distance

normalized 8-point algorithm

ground plane detector
(Gaussian kernel density estimation)

blob/corner detector (NMS)
Sobel filter response descriptor
SAD matching

inliers

R, t

ρ

correspondences

Motion Scale Estimation

(w/o scale)

Figure 3: Five steps of our visual odometry is presented with their specification.
We utilize a novel 3-point algorithm based on epipolar geometry with con-
strained motion in outlier rejection. We adopt feature extraction/matching and
scale estimation implemented in the well-known open-source software, LIB-
VISO2 [16].

First, we use a blob/corner detector and sum-of-absolute-
differences (SAD) matching to generate feature correspon-
dences between an adjacent pair of images [16]. Here, cer-
tain correspondences do not associated with camera motion be-
cause they are generated from moving objects or wrong feature
matching. In order to remove such outliers and estimate camera
motion accurately, we designed an epipolar version of a 3-point
algorithm in conjunction with RANSAC. Our novel 3-point al-
gorithm is based on epipolar geometry with constrained motion,
which is different from the conventional 3-point algorithm for
stereo configurations with a known depth. Finally, once outliers
are removed, we apply the normalized 8-point algorithm [17] to
estimate camera motion from inliers in the least-squares sense
and use the constant distance between the ground and camera
to resolve scale ambiguity of the estimated motion.

Ourlier rejection for visual odometry: Our outlier rejection
is more specialized in driving situations in the view of mo-
tion models. Generally, motion is represented in 6-degree-of-
freedom (DoF) and its epipolar geometry is written by an es-
sential matrix. However, a vehicle on a road exhibits locally
planar motion, making the 6-DoF general motion model redun-
dant for short-term motion estimation. The planar motion is
represented by three variables, (x, y, θ) in the rectangular co-
ordinate or (ρ, φ, θ) in the polar coordinate. We additionally
consider pitch rotation, ε, for small and abrupt motion due to
vibration and bumps on a road. Overall, the 4-DoF motion is
represented by

R = Ry(θ)Rx(ε) and t = ρ

sinφ
0

cosφ

 , (1)

and its epipolar constraint is written by

x′>Ex = 0 (E = [t]×R) , (2)

where x and x′ are a pair of corresponded features between
two adjacent images. Our novel 3-point algorithm finds motion,
(φ, θ, ε), using Newton’s method with three pairs of correspon-
dences. The scale of motion, ρ, is separately estimated based

3

Figure 4: Feature correspondences are classified into inliers (red) and outliers
(blue) in outlier rejection. This image is from KITTI dataset (No. 7, 729th
frame).

on our prior knowledge on the distance between the ground and
the camera.

We use our 3-point algorithm to identify outliers with a
framework of RANSAC. Our proposed algorithm requires less
number of correspondences than previous 5-point or 8-point al-
gorithm, so RANSAC needs exponentially less number of iter-
ations than the others. This makes our outlier rejection much
faster than the others. In addition, the proposed method is more
robust against noise because it only considers major compo-
nents of motion and ignores minor parts. Figure 4 presents an
example outlier rejection by the proposed algorithm.

4.2. Ground Plane Homography
Planar homography is utilized to estimate the relative posi-

tion of observed objects from a single camera. The ground
plane is a good clue to derive the position because it is the most
significant plane during driving and all on-road objects are in
contact with the ground. Ground plane homography HG is a
point-to-point transformation between the ground region on an
image and the ground plane in the metric world. Therefore, the
metric position of an object X is acquired by

X = HGx , (3)

where x is a pixel-unit point where the object meets the ground
in the image. In our application, we assume that the ground
plane homography is constant because the mounted camera is
fixed on the vehicle and a road is locally flat. We acquired the
ground plane homography using a 4-point algorithm with more
than 10 pairs of correspondences.

5. Detection Component

The goal of the detection component is to locate pedestri-
ans and vehicles appearing in input video. Our detection com-
ponent adopts and extends state-of-the-art object recognition
methodologies, so that they are able to perform more reliable
detection of pedestrians and vehicles in the driving environment
based on image features. The location and size of each object
in the scene (i.e., a pedestrian or a vehicle) are estimated per
image frame, and they are transformed into metric coordinates
using the geometry component.

The detection component estimates the locations of pedestri-
ans in each frame as 2-D rectangles in the image. Our detection
component is based on the image-based pedestrian detector in-
troduced in [18], which improves the part-based detector [19]

Inpainting

Baseline
Detection

(e.g. pedestrian)

Similarity
d(I1,I2)

0.75 0.84 0.42 0.31

Object
Verification

False False True True

Figure 5: An overall process of our object detection using inpainting. A bound-
ing box obtained from baseline detector is designated as the inpainting region,
and the similarity is measured by comparing the inpainted region and the origi-
nal region. Finally, our object detector selects only the object candidates which
have low similarity between original region (left) and inpainted region (right).

with an inpainting technique. In our previous work, we pro-
posed a new application of conventional inpainting algorithms
whose original goal was a restoration of damaged paintings, so
that the inpainting distinguishes the failures of the baseline de-
tector (e.g., a part-based detector). The idea was that an original
image region (e.g., a bounding box) and its inpainting result are
similar only when the region corresponds to a background.

For our pedestrian detection in a driving environment, we
further improve the inpainting-based pedestrian detection. The
idea is that the concept of inpainting to recover background re-
gions (e.g., Figure 5) are especially sutiable for a driving envi-
ronment because a picture taken from a vehicle-mounted cam-
era in a driving environment consists of the continuous struc-
tures which are suitable for consistent inpainting result (e.g.,
woods, road, sky, and so on). For our detection component, we
implement a new image-to-image similarity calculation algo-
rithm to better consider the characteristic of the exemplar-based
inpainting. The original algorithm calculates the difference by
comparing a pixel at the same position in an inpainting result
and an original image. Its limitation is that the exemplar-based
inpainting simply pastes a square-shaped exemplar patch to the
inpainting region (to recover the region), making the brute-
force pixel-wise comparison between two images (i.e., the im-
age regions before inpainting and after inpainting) inaccurate.

Therefore, we compare the adjacent pixel to find the best
matched pixel using Equation (4).

d(I1, I2) =
1

N(Ω)

∑
p∈Ω

min
(
f
(
I1(p), I2(p− k)

))
·s(p)

(4)
where d(I1, I2) is the difference between two images, and Ω is
the inpainted region. f(I1(p), I2(p− k)) is 1 if the difference
between a pixel of inpainted region I1(p) and a pixel around p
of original image I2(p− k) is small enough otherwise 0. N(Ω)

4

Figure 6: Example pedestrian/vehicle detection results obtained from our de-
tection component.

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 . . . m

color

P
ro

b
a
b

il
it

y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 . . . m

color

P
ro

b
a
b

il
it

y

H1

H2

Histogram

Backprojection

R H1(R(u)) H2(R(u)) H(R(u))

(a) (b) (c) (d)

Figure 7: A sample image and corresponding backprojection images using
2 × 1 partition model: (a) input image, (b) backprojection image using the
upper part histogram of the object, (c) backprojection image using the lower
part histogram of the object, (d) conventional backprojection image using sin-
gle histogram model.

is the area of the inpainted region, and we divide N(Ω) to nor-
malize the similarity. s(p) is the weight based on object shape.

Our system adopts the Viola and Jones method [20] to detect
rear-view of appearing vehicles. The Violar and Jones method
extracts the Haar-like features and trains object detectors using
AdaBoost. Our implementation was trained to recognize three
categories of vehicles (sedans, SUVs, and buses), so that it cov-
ers diverse vehicles appearing in a driving environment. We
take a picture and crop the rear view of vehicles in the picture,
and group them by the types of vehicles to train them indepen-
dently.

Once detection results (i.e., image locations of appearing
pedestrians and vehicles) are obtained and their locations in
the metric coordinate are estimated using our geometry com-
ponent, they are passed to the tracking component. Figure 6
shows example detections from our videos. The tracking com-
ponent which we discuss in the following section computes 3-D
XYT trajectories of vehicles and pedestrians based on the de-
tection results.

6. Tracking Component

The objective of the tracking component is to estimate 3-
D XYT trajectories of all detected pedestrians and vehicles in
metric coordinates. The tracking component maintains a single
hypothesis for each object. Detection results from the detec-
tion component (at every frame) are matched with the main-
tained object hypotheses using a greedy algorithm described in
[21]. For each of unmatched detections, a new hypothesis is

Figure 8: Mean-shift (left) versus proposed likelihood measure (right).

created and an object model is built from the corresponding im-
age patch. Whenever the match fails, a visual tracker is applied
to update the unmatched object hypotheses. The actual trajecto-
ries are generated by applying extended Kalman filters (EKFs)
with a constant velocity model in metric coordinates.

A visual tracker, which searches for the best matching object
region in the next frame based on its appearance in the current
frame, plays an important role of tracking unmatched objects
and recovering possible detection errors. In our previous work,
we developed the idea of a partition-based mean-shift tracker
[22] where an object model is represented by multiple patch
histograms and its mean-shift iteration is applied on histogram
backprojection densities to locate the target (Figure 7).

For the tracking of pedestrians in our driving environment,
we take advantage of the improved version of our partition-
based mean-shit tracker that obtains significantly better track-
ing performance by substituting the mean-shift iteration by a
new likelihood measure [23]. The proposed likelihood measure
is computed by averaging the local density estimates from his-
togram backprojection and given by

L(u) =
1

M

M∑
i=1

K(ui − u)Dg(ui)(ui), (5)

whereK(·) is a radially symmetric kernel defining an influence
zone, {ui}i=1,...,M is the pixel locations within a local win-
dow centered at u, the function g associates the partition index
to the pixel locations, and Dg(ui)(ui) is the density estimates
computed from g(ui)-th patch histogram.

The difference of the proposed likelihood measure from the
mean-shift is illustrated in Figure 8. The mean-shift framework
implicitly assumes that Dj represents the probability distribu-
tion of the target location, finding the local peak of the density
as the center location of the object. On the other hand, in our
approach we interpret Dj as the probability of each pixel being
an object. As a result, our tracker chooses the window that con-
tains the largest number of object pixels as the object location
by maximizing Equation (5).

For the tracking of rigid objects (vehicles), we adopt a sim-
ple HSV template tracker [22]. For each initial detection of a
vehicle, a HSV template is built from the corresponding image
region, forming an object model. A target object is then located
by minimizing the average color difference between the object
model and candidate region. Different from histogram-based
approaches, template matching utilizes raw colors of an object

5

Driver’s vehicle is

decelerating

Pedestrian is

in front

…

Figure 9: An illustration of atomic sub-events detected from the trajectory of
the driving vehicle (green) and that of the pedestrian (blue). The event of ‘de-
celerating’ is detected solely based on the XYT trajectory of the vehicle, and the
event of ‘person in front’ is detected based on features from the two trajectories.

with their spatial information in pixel level, and therefore it is
less sensitive to background clutters and is able to locate an ob-
ject more accurately if the object has a rigid body and if the
orientation is fixed.

7. Event Analysis Component

The role of the event analysis component is to label all on-
going events of the vehicle given a continuous video sequence.
Our driving diary essentially is a set of labeled driving events,
and the event analysis component serve as a core to generate
it by detecting driving events from videos. We extended the
previous approach of spatio-temporal relationship match (STR-
match) [12] that obtained successful results on human activity
recognition, so that events are learned and recognized in an ad-
ditive fashion. Learned driving events are represented in terms
of simpler sub-events, and they are recognized by hierarchically
analyzing the relationships among the detected sub-events. We
first discuss recognition of atomic-level sub-events in Subsec-
tion 7.1, and present our hierarchical driving event recognition
and learning approach in Subsection 7.2. Finally, we present
our probabilistic driving event detection approach in Subsec-
tion 7.3.

7.1. Atomic Sub-event Detection

Our system first recognizes nine types of elementary sub-
events that consist complex vehicle events, which serve as
building blocks of our hierarchical event detection process: ‘car
passing another’, ‘car passed by another’, ‘car is at front of an-
other’, ‘car at behind of another’, ‘cars side-by-side’, ‘accel-
erating’, ‘decelerating’, ‘vehicle stopped’, and ‘pedestrian in
front’. These semantic sub-events are used as the system’s vo-
cabulary to describe complex driving events. The system rec-
ognizes the sub-events using four types of features directly ex-
tracted from local 3-D XYT trajectories of the driving vehicle
and the other objects (i.e., pedestrians and vehicles): ‘orienta-
tion’, ‘velocity’, ‘acceleration’, and ‘relative XY coordinate of
the interacting vehicle’. Based on the features computed from
the trajectories, sub-events are inferred using Bayesian classi-
fiers. More specifically, one Bayesian classifier using four types
of features are constructed per sub-event, and it is applied for all

Figure 10: Example spatio-temporal relationship (STR) decision tree of a driv-
ing event ‘overtake’. The left child of a node is activated when the relation
corresponding to the node is true, and the right child is activated other wise.

possible video segments to decide whether the segment matches
the sub-event (i.e., sliding windows). As a result, time intervals
(i.e., pairs of starting time and ending time) of all occurring
sub-events are recognized, and are provided to the system for
the further analysis. Figure 9 shows example sub-events de-
tected from XYT trajectories.

7.2. Hierarchical Decision Tree-based Event Detection

We implement a decision-tree version of the STR-match
to recognize vehicle activities from detected sub-events. Our
event analysis component learns decision-tree classifiers from
training examples, automatically mining important spatio-
temporal patterns (i.e., relationships) among sub-events. That
is, we statistically train an event detector per activity, which will
make the videos containing the corresponding event to reach a
leaf node with the ‘true’ label when tested with the decision
tree.

Our STR decision tree is a binary decision tree where each
node of it corresponds to a predicate describing a condition of
a particular sub-event (e.g., its duration greater than a certain
threshold) or a relationship between two sub-events (e.g., a time
interval of one sub-event must occur during the other’s). As
single-sub-event predicates, we use the simple two predicates
with a threshold parameter (greater and less). Allen’s temporal
predicates [24] (equals, before, meets, overlaps, during, starts,
and finishes) and their inverse predicates are adopted to describe
relations between two sub-events. These predicates not only de-
scribe that certain sub-events must occur in order for the activity
to occur, but also describe necessary temporal relations among
the sub-events’ time intervals.

The recognition is performed by traversing the tree from the
root to one of its leaves, sequentially testings whether its sub-
event detection results satisfy the predicate of each node. If it
does, the recognition system traverses to the left child of the
node. Otherwise, it must go to the right child. Figure 10 shows
an example STR decision tree learned from training video se-
quences. The decision tree illustrates that in order for a driving
event of ‘overtaking’ to occur, its sub-events ‘car at behind of
another car’, ‘cars side-by-side’, and ‘car at front of another
car’ must occur while satisfying a particular structure.

The decision trees are learned by iteratively searching for the
predicate which maximizes the gain given the sub-event detec-
tion results of training sequences. The new node (i.e., the pred-

6

icate) providing the maximum information gain is added to the
tree one by one based on training examples. The gain of the de-
cision tree caused by adding a new predicate to one of its leaves
is defined as follows:

Gain(S, n) = Entropy(S, n)−
∑
b

|Sb|
|S|

Entropy(Sb, n)

(6)
where b is a binary variable, S is a set of training examples,
and Sb is the subset of S having value b for node n. Here, the
entropy is defined as:

Entropy(S, n) = −pn0 log2(pn0)− pn1 log2(pn1) (7)

where pn0 is the fraction of negative examples in S for node n,
and pn1 is the fraction of positive examples in S. If S is divided
into two sets of an identical size, the entropy is 1 and we have
the gain of 0.

Essentially, our learning algorithm is searching for the predi-
cate that divides the training examples into two sets whose size
difference is the greatest (i.e., most unbalanced). Each of the
left child and the right child of the added node either becomes a
leaf node that decides that the driving event has occurred, or be-
comes an intermediate node waiting for another predicate to be
added. A greedy search strategy is applied to find the STR de-
cision tree that provides maximum gain given training videos.

In order to make our STR decision tree learning incremental
(i.e., in order to enable addition of user-specific events), we take
advantage of the incremental tree induction (ITI) method [25].
The ITI method is incorporated into our STR tree learning pro-
cess, which recursively updates the trees after each addition of
a new video example to ensure the optimum gain. That is, we
are representing driving events in terms of decision tree com-
posed of temporal predicates, and are taking advantage of the
incremental tree update method for online learning. Our trees
allow a user to feed videos of the new event to be annotated.

As a result, our system recognizes complex vehicle events
(e.g., overtaking) incrementally learned from training videos.
The personal driving diary is constructed by concatenating an-
notated driving events while describing other context includ-
ing locations of the vehicle, vehicle tracking histories, and/or
pedestrian tracking histories.

7.3. Probabilistic Event Detection
This subsection presents a probabilistic approach to recog-

nize driving events from videos. The deterministic recognition
approach using a decision tree presented in the previous subsec-
tion is able to make a hard decision whether the video contains
an event or not, but it is unable to adjust the sensitivity of such
detections (i.e., there is no decision threshold) or provide any
confidence values for the detections. This makes its integra-
tion with real-world applications very challenging particularly
when there are multiple types of events requiring different lev-
els of sensitivities (e.g., dangerous events vs. normal events).
Therefore, in this subsection, we extend our spatio-temporal re-
lationship tree approach, so that it explicitly computes proba-
bilities (i.e., confidences) of driving events while recognizing
them.

n000

n0

l3

n00
n01

l2

n011
l4

l5 l6 l2

w00 w01

w000 w001 w010 w011

w0000 w0001 w0110 w0111

(a) An example decision tree (b) Ancestor edges for each leaf

Figure 11: (a) An example decision tree with variables to denote nodes and
edges, and (b) a figure illustrating ancestor edges for each leaf node which
needs to be enumerated during the probability computation.

We view the learned decision tree as layers of semantic rules
that will lead to a particular decision given an unknown video
observation. The idea is to compute the probability of the ob-
servation reaching each leaf node of the tree by satisfying all
semantic rules of its ancestor edges, and integrate them to make
the probabilistic decision.

Let l indicate a particular leaf node of the decision tree, and
letWl denote a set of its ancestor edges. For example, in Figure
11, the set Wl5 corresponding to the leaf l5 will be: Wl5 =
{w01, w011, w0110}. We compute the probability of an event a
occurring in the given video v (i.e., P (a|v)) by multiplying the
probability ofWl being satisfied given the video (i.e., P (Wl|v))
and the posterior probability of the leaf node corresponding to
the event a (i.e., P (a|l,Wl)):

P (a|v) =
∑
l

P (a|l,Wl)P (Wl|v). (8)

Thus, in our new tree representation, each leaf node maintains a
value describing the posterior probability P (a|l,Wl) to support
the probability computations,

P (a|l,Wl) =
pl1

pl0 + pl1
(9)

where pl0 is the fraction of positive training samples satisfying
Wl, and pl1 is the fraction of positive training examples satisfy-
ing Wl. These fractions are computed during the decision tree
learning period discussed in Subsection 7.2.
P (Wl|v) is the probability of binary conditionsWl being sat-

isfied given the video input v. As discussed in Subsection 7.2,
Wl is composed of predicates with one/two parameters, which
must be tested based on the atomic sub-events detected from
trajectory features. Here, in order to compensate for noisy ob-
servations and recover errors in estimating atomic sub-events
from features probabilistically, we introduce a new variable
T = {t1, ..., tm} which is a set of time intervals of atomic sub-
events:

P (Wl|v) =
∑
T

P (Wl|T)P (T |v) ≈ max
T

P (Wl|T)P (T |v).

(10)
The idea is to consider multiple possible time intervals ti per
atomic sub-event i (instead of using one fixed time interval as
in the deterministic method), which serves as an input to our
probabilistic decision tree. We define P (Wl|T) as 1 only when

7

all conditionsWl are satisfied for the input time intervals T , and
0 otherwise. P (T |v) =

∏
i P (ti|v) is defined using the atomic

sub-event detection results as follows:

P (ti|v) = exp
(
−min

qi
||ti − qi||

)
(11)

where qi is a time interval of the ith atomic sub-event detected
in Subsection 7.1, and ||ti − qi|| is the distance between two
time intervals.

The computation of P (a|v) requires consideration of O(cm)
number of time interval combinations in principle, where m is
the number of atomic sub-events used in the decision tree and c
is the number of time intervals candidates being considered.

In order to avoid an exponential number of computations and
enable efficient approximation of the solution, we further pro-
pose the following greedy recursive formulation: P (a|v) =
F (T, nr) where nr is the root node, and

F (T, n) = max
Tn

F (T, n0)P (wn0|Tn)P (Tn|v)

+F (T, n1)P (wn1|Tn)(1− P (Tn|v))
(12)

for all non-leaf nodes n and

F (T, l) = P (a|l) (13)

for all leaf nodes l. Tn is the set of time intervals related to the
node n (either a single interval or a pair of intervals), and n0 is
the left child of the node n and n1 is the right child of n. The
time complexity to compute F (T, nr) isO(c2 ·|n|) in the worse
case, where |n| is the number of nodes.

Our formulation is different from traditional probabilistic de-
cision trees [26] in the aspect that our approach interprets noisy
video observations using the time interval set variable T , which
is designed particularly for the driving event detection.

8. Experiments

In this section, we evaluate the accuracy of the personal driv-
ing diary generated by our system. Our driving diary is an
event-based log of the user’s driving history, implying that the
correctness of the diary must statistically be evaluated by mea-
suring the event annotation accuracy. For our experiment, we
constructed a new dataset with driving video scenes taken from
a first-person view camera attached to a vehicle. Using this
dataset involving various types of driving events, we tested our
system’s ability to annotate time intervals of ongoing events.

In Subsection 8.1, we first introduce the new dataset com-
posed of driving videos. Next, in Subsection 8.2, we measure
the performance of our system’s each component using the es-
tablished dataset as well as other existing public datasets. Fi-
nally, in Subsection 8.3, we evaluate the accuracy of the con-
structed driving diary, which is the event annotation perfor-
mance.

8.1. Dataset
Our dataset focuses on six types of common driving events

which are semantically important: long stopping, overtake,

overtaken, sudden acceleration, sudden stop - pedestrian, and
sudden stop - vehicle. A ‘long stopping’ describes the situation
which the driving vehicle was staying stationary for more than
15 seconds. A ‘sudden stop - pedestrian’ indicates that the car
was suddenly stopped because of the pedestrian ahead, and a
‘sudden stop - vehicle’ corresponds to an event of the car being
stopped by another car in its front.

We have collected more than 100 minutes of driving videos
from a vehicle-mounted camera. The camera was mounted un-
der the rear-view mirror, observing the front. The dataset is
segmented into 52 scenes, where each of them contains 0 to 3
events. As a result, a total of 60 event occurrences (i.e., 10 per
event) has been captured by our dataset, and their time interval
ground truths are provided. In addition, image locations (i.e.,
bounding boxes) of pedestrians and vehicles appearing in the
videos were labeled by human annotators.

8.2. Component-wise Evaluation
This subsection presents performances of the system’s low-

level components used to obtain 3-D XYT trajectories: geome-
try component, detection component, and tracking component.
Since our new dataset is a pure video dataset without any abso-
lute location information of the vehicle, we use a public dataset
to measure the performance of the geometry component. For
the evaluation of the detection component and tracking compo-
nent, our new driving diary dataset was directly used.

8.2.1. Geometry Component - Visual Odometry
Our visual odometry was verified on KITTI visual odometry

dataset [27] because this dataset accompanies with the true tra-
jectories acquired by highly precise GPS/IMU system, OXTS
RT3003. The dataset was captured by a stereo camera, a pair of
PointGrey Flea2 cameras whose resolution was 1241x376 with
10Hz framerate, respectively. We only used left-side images
among the given stereo sequence because our system aims at a
single camera. We used four image sequences (No. 4, 5, 6, and
7) which have consistent calibration parameters. Four sets are
composed of 271, 2761, 1101, and 1101 numbers of images,
respectively.

We compared performance of our visual odometry with
LIBVISO-2 [16]. We used its monocular version, known as
VISO2-M. Its outlier rejection is based on RANSAC with 6-
DoF general motion model (fundamental matrix) and Samp-
son error. In contrast to our approach, each motion hypothe-
sis is generated by eight correspondences with the normalized
8-point algorithm. To focus on verifying our proposed out-
lier rejection, we adopted same feature tracking and scale es-
timation with VISO2-M. VISO-M and our visual odometry had
same values of parameters except two RANSAC parameters,
the number of iterations and outlier threshold. VISO2-M was
configured at 2000 iterations and 10−5 threshold (default), but
our visual odometry was at 60 iterations and 10−7 threshold.
Their performance was quantified by translational error, rota-
tional error [27], and computing time. Two error measures were
calculated on all available subsequences of 10 different path
lengths. Our implementation used a single core (C/C++) and
computing time was measured at Intel Core i7 CPU at 2.80GHz.

8

0 100 200 300 400
6

8

10

12

14

16

18

Path Length [m]

T
ra

n
s

la
ti

o
n

 E
rr

o
r

[%
]

VISO2−M

Ours

(a) Translational Error

0 100 200 300 400

0.02

0.04

0.06

0.08

Path Length [m]
R

o
ta

ti
o

n
 E

rr
o

r
[d

e
g

/m
]

VISO2−M

Ours

(b) Rotational Error

Visual Odometry VISO2-M Ours

Computing Time 145.4±12.1 [msec] 86.5±11.8 [msec]

(c) Computing Time

Figure 12: Accuracies were measured in terms of (a) translational errors and (b)
rotational errors. They are described with respect to 10 different path lengths,
[5, 10, 50, 100, 150, 200, · · · , 400]. Computing time (c) is whole processing
time per frame including feature extraction/matching, outlier rejection, pose
estimation, and scale estimation.

−250 −200 −150 −100 −50 0 50

−100

−50

0

50

100

150

X [m]

Z
 [

m
]

Ground Truth
VISO2−M
Ours

Figure 13: Trajectories with their ground truths are described for KITTI dataset
(No. 7).

The accuracy and computing time of each method is pre-
sented in Figure 12. Example trajectories are also shown in
Figure 13. The proposed visual odometry displays almost 30
percents less rotational error for path lengths great than 150
meters. It is because of the fact that our 4-DoF motion model
is more robust to noise than 6-DoF motion model when the ve-
hicle undergoes (approximate) planar motion. Even though the
proposed method shows more translational error in short path
length, it obtains better results after 150 meters path length.
The proposed outlier rejection does not take into account y-
directional translation and rolling motion, making inliers for
pose estimation have less y-directional translation and rolling
than the ground truth. This causes less accurate scale estima-
tion for short ranges. However, the proposed method showed
better results (i.e., less translational drift) in long range, since it
provides more accurate rotational angles. The proposed method
also spent around 40 percents less computing time because our
outlier rejection requires less number of iteration in RANSAC.

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
re

ci
si

o
n

recall

Part-based

Part-based+Inpainting

Our approachs

Figure 14: Improvement of precision-recall curve with part-based detector us-
ing our dataset. We are able to observe that our approach which considers
the characteristic of exemplar-based inpainting obtains better precision-recall
graphs.

8.2.2. Detection Component
We report the performance of pedestrian and vehicle detec-

tors measured with our dataset. Our driving video dataset in-
cludes a total of 22,594 annotated rear views of vehicle and
3,598 pedestrians.

The precision-recall graph of the pedestrian detector de-
scribed in Section 5 is presented in Figure 14. The part-based
detector was used as a baseline pedestrian detector, and it de-
tects the 2514 of true positives and 93,600 of the false positives.
As a result, the average precision (AP) of the baseline detector
was 0.399. The AP of [18] with the part-based detector and
the inpainting was 0.419. The average precision of our method
with an improved similarity measure for the driving environ-
ment was 0.424, and it lost 79 true positives while filtering out
54,219 false positives. In driving videos, our approach was able
to eliminate 57.9% of false positives while losing only 3.15%
of true positives.

The precision for the vehicle detector was 0.539 and the re-
call was 0.109. The detectors obtained results which were suf-
ficient for the tracking component to reliably generate trajecto-
ries.

8.2.3. Tracking Component
In this section, we evaluate the performance of our visual

tracker on real video sequences and compare the performance
with state of the art tracking algorithms. For this experiment,
we selected 10 pedestrian video sequences and 10 vehicle se-
quences from our driving video dataset. These test videos in-
volve a large amount of scale changes of target objects since
they are obtained from a driving environment. The tracking
performance is evaluated by using two quality measures: (1) a
tracking accuracy and (2) a successful tracking rate. The track-
ing accuracy is measured by the object detection-criterion of
the VOC challenge [28], which is given by

λaccuracy =
|Ω ∩Ψ|
|Ω ∪Ψ|

, (14)

where Ω denotes a detected bounding box and Ψ the ground
truth bounding box. The second measure of successful tracking

9

Table 1: Performance of the pedestrian trackers – Tracking accuracies

Seq. Frames MS P-MS VTD PN CT TM P-ML

ped01 156 0.70 0.76 0.11 0.10 0.74 0.79 0.79

ped02 152 0.56 0.52 0.51 0.50 0.42 0.50 0.55

ped03 83 0.44 0.51 0.39 0.37 0.54 0.23 0.51

ped04 78 0.33 0.47 0.42 0.52 0.33 0.43 0.55

ped05 500 0.71 0.72 0.41 0.24 0.32 0.56 0.74

ped06 78 0.53 0.53 0.55 0.49 0.47 0.45 0.60

ped07 94 0.11 0.11 0.11 0.29 0.24 0.10 0.11

ped08 171 0.75 0.75 0.63 0.46 0.36 0.39 0.77

ped09 153 0.50 0.59 0.61 0.43 0.47 0.35 0.75

ped10 166 0.46 0.54 0.33 0.28 0.31 0.45 0.48

Avg. 0.51 0.55 0.41 0.37 0.42 0.43 0.58

Table 2: Performance of the pedestrian trackers – Successful tracking rate

Seq. Frames MS P-MS VTD PN CT TM P-ML

ped01 156 1.00 1.00 0.13 0.09 0.97 1.00 1.00

ped02 152 0.77 0.52 0.48 0.68 0.19 0.29 0.74

ped03 83 0.41 0.53 0.41 0.53 0.59 0.12 0.59

ped04 78 0.19 0.38 0.38 0.44 0.38 0.63 0.63

ped05 500 0.99 1.00 0.50 0.20 0.30 0.75 1.00

ped06 78 0.44 0.69 0.63 0.63 0.31 0.31 0.63

ped07 94 0.11 0.11 0.11 0.32 0.26 0.11 0.11

ped08 171 1.00 1.00 0.83 0.34 0.46 0.29 1.00

ped09 153 0.36 0.81 0.55 0.29 0.42 0.29 1.00

ped10 166 0.35 0.62 0.44 0.38 0.41 0.68 0.65

Avg. 0.56 0.66 0.44 0.39 0.43 0.45 0.73

rate is computed by the ratio of the successfully tracked frames.
A tracked frame is considered as successful if the tracking ac-
curacy is larger than 0.5.

As described in Section 6, we use our partition-based maxi-
mum likelihood tracker (P-ML) for the pedestrian tracking and
the template tracker (TM) for the vehicle tracking. In addition
to these two trackers, we also implemented two baseline track-
ers and tested three recent state-of-the-art trackers, comparing
their results with our tracking results. Comanicui’s mean-shift
tracker (MS) [29] and the partition-based mean-shift tracker (P-
MS) [22] are the two baseline trackers we implemented. VTD
tracker [30], PN tracker [31], and Context Tracker (CT) [32]
are the three state-of-the-art trackers we also tested. For each
of these three trackers, we used the program code distributed by
the original authors of the tracking algorithm.

Table 1 shows the average tracking accuracies of the tested
methods on pedestrian tracking, and Table 2 shows the results
in terms of successful tracking rates. We are able to observe
that the proposed histogram-based tracker with maximum like-
lihood localization (P-ML) shows the best performance for the
pedestrian tracking. Particularly, the results in Table 2 show
that our visual tracker is able to track target objects success-
fully for most cases. One exception was the ‘ped07’ sequence,

Table 3: Performance of the vehicle trackers – Tracking accuracies

Seq. Frames MS P-MS VTD PN CT P-ML TM

veh01 230 0.82 0.83 0.94 0.71 0.91 0.87 0.94

veh02 227 0.49 0.55 0.78 0.67 0.78 0.55 0.77

veh03 237 0.48 0.48 0.70 0.73 0.80 0.52 0.73

veh04 212 0.63 0.76 0.77 0.67 0.82 0.77 0.84

veh05 235 0.46 0.53 0.79 0.62 0.82 0.52 0.80

veh06 238 0.75 0.77 0.86 0.70 0.83 0.81 0.83

veh07 370 0.49 0.57 0.74 0.62 0.72 0.67 0.78

veh08 208 0.66 0.67 0.70 0.67 0.73 0.76 0.78

veh09 234 0.70 0.75 0.87 0.71 0.89 0.79 0.89

veh10 510 0.33 0.36 0.85 0.50 0.84 0.34 0.85

Avg. 0.58 0.63 0.80 0.66 0.81 0.66 0.82

Table 4: Performance of the vehicle trackers – Successful tracking rate

Seq. Frames MS P-MS VTD PN CT P-ML TM

veh01 230 0.98 1.00 1.00 0.89 1.00 1.00 1.00

veh02 227 0.30 0.50 1.00 0.83 1.00 0.72 1.00

veh03 237 0.44 0.65 1.00 0.92 1.00 0.73 0.98

veh04 212 0.77 1.00 1.00 0.93 1.00 1.00 1.00

veh05 235 0.28 0.55 1.00 0.81 1.00 0.43 1.00

veh06 238 0.96 0.94 1.00 0.94 1.00 1.00 1.00

veh07 370 0.45 0.82 1.00 0.92 0.85 0.99 1.00

veh08 208 0.90 0.95 0.95 0.95 0.98 1.00 1.00

veh09 234 0.87 0.94 1.00 0.96 1.00 0.96 1.00

veh10 510 0.34 0.39 1.00 0.56 1.00 0.38 1.00

Avg. 0.63 0.77 1.00 0.87 0.98 0.82 1.00

where our tracker failed at very early stage of tracking due to
heavy occlusion.

Similarly, Table 3 shows the average tracking accuracies of
the tested methods on vehicle tracking, and Table 4 shows their
results in terms of successful tracking rates. In the case of the
vehicle tracking, our template tracker and VTD tracker obtained
the best performances. The approaches had less difficulty track-
ing rigid vehicles compared to the tracking of non-rigid pedes-
trians in general. Figure 15 shows sample snapshots of our vi-
sual tracker on the test dataset.

8.3. Personal Driving Diary Evaluation

Finally, in this subsection, we evaluate the accuracy of the
constructed personal driving diary using our video dataset. We
measured the event annotation accuracies (i.e., detection accu-
racies) of our system. That is, given a continuous video stream,
for each event, the system was asked to provide all time inter-
vals that it believes to contain the event. In our experiments, an
event annotation was treated as a correct annotation if and only
if the labeled interval overlaps more than 50% with the ground
truth label (provided by the human). Otherwise, it was treated
as a false positive.

10

Figure 15: (first row) Sample snapshots of our histogram-based tracker (P-ML)
on pedestrian sequences. The sequence name is ped04, ped05, ped07 in or-
der. (second row) Sample snapshots of our template tracker (TM) on vehicle
sequences. The sequence name is veh01, veh04, veh10.

We implemented (i) the deterministic version of our ap-
proach described in Subsection 7.2 and (ii) our probabilistic
event recognition approach of Subsection 7.3. In addition, in
order to illustrate the advantage of the recognition methodol-
ogy proposed in this paper over existing state-of-the-arts, we
implemented (iii) a SVM classification-based approach using
local spatio-temporal features [11]. This baseline approach fol-
lows the concept of bag-of-words, representing each event as
a histogram of ‘visual words’, which essential are clusters of
spatio-temporal features capturing similar local motion (e.g.,
[10, 11, 33]). This approach does not require background sub-
traction or tracking, and it has been confirmed to be robust to
noisy inputs and illumination changes. For all three recognition
approaches, a sliding window technique was applied to detect
events from continuous videos.

We used the random validation setting where we randomly
select 30 video segments (i.e., 5 occurrences per event) as train-
ing data and use the other videos as testing data. Since this
training/testing split contains randomness (i.e., they are ran-
domly selected), we performed this validation process for 50
rounds and averaged their results. For each round, the event
analysis component takes advantage of the given training ex-
amples to learn the spatio-temporal decision tree classifiers. In
order to confirm the incremental property of our learning, the
training videos have been provided to the system sequentially.
Once trained, our recognition approach was applied to the re-
maining testing videos.

We measured the performances of recognition systems in
terms of precision and recall values. Precision is defined as
tp/(tp + fp) where tp is the number of true positives and
fp is the number of false positive, and recall is defined as
tp/(tp + fn) where fn is the number of false negatives. In
general, these precision and recall values change as the sys-
tem changes the detection threshold, and we are able to obtain
precision-recall curves (PR curves) for each event.

More specifically, we obtained (1) average F-measures and
(2) average precision-recall graphs of the recognition ap-
proaches. F-measure is a performance evaluation measure often
used in the data retrieval area and is defined as:

Fβ = (1 + β2) · pr · rc
β2 · pr + rc

(15)

where pr is the precision and rc is the recall value. We used

Table 5: Recognition accuracy (i.e., F-measure) of the three event detection
approaches.

Events ST feature Rel. tree Prob. rel.
Long stopping 0.726 1.000 1.000

Overtake 0.559 0.596 0.611
Overtaken 0.448 0.640 0.666

Sudden acceleration 0.497 0.833 0.841
Sudden stop - pedestrian 0.342 0.766 0.808

Sudden stop - vehicle 0.536 0.783 0.866
Total 0.518 0.770 0.799

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

Ours

Space-time features

Random

Figure 16: Average precision-recall curves comparing driving event detection
performances of the recognition approaches. A ‘random selection’ strategy was
also tested to illustrate the advantages of our proposed approach.

F1 score where β = 1. Since the deterministic decision tree
only provides a single pair of [precision, recall] values, it was
only used for computing its F-measure (i.e., it provides a single
point in the precision-recall dimension, not a curve).

Table 5 compares F-measures of the three driving event
recognition approaches. We are able to observe that our ap-
proaches that explicitly considers vehicle/pedestrian trajecto-
ries obtain superior performance compared to the baseline ap-
proach using spatio-temporal features. Also, we are able to
clearly observe the benefits of the probabilistic recognition: it
compensates for noisy observation errors, resulting better per-
formance.

Similarly, Figure 16 illustrates average precision-recall
curves of the event detection approaches. We are able to ob-
serve that our system successfully annotates ongoing events
in continuous video streams, reliably constructing appropriate
personal driving diaries. By explicitly estimating the trajectory
of the driving vehicle as well as those of appearing pedestri-
ans and vehicles, our approach was able to extract meaning-
ful features from videos and annotate semantic events consider-
ing spatio-temporal relations among the sub-events probabilis-
tically. Figure 17 shows average PR curves of the system per
event. Overall, our approach showed better results compared
to the baseline approach following the concept of bag-of-words
of local space-time features, which only focus on a set of local
motion while ignoring other information.

In Figure 18, our system interface describing retrieved
videos, relative locations of the vehicle on the map, and pedes-
trian/vehicle trajectories are illustrated. In addition, example
videos of important driving events annotated using our system
is shown in Figure 19.

11

(a) Long stopping (b) Overtake (c) Overtaken (d) Sudden acceleration (e) Sudden stop - pedestrian (f) Sudden stop - vehicle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

Ours

Space-time features

Random

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

Figure 17: Average precision-recall curves of the systems obtained for each event class. We are able to observe that our approach outperforms the baseline approach
using local spatio-temporal video features in all event classes.

Figure 18: Video retrieval interface of our diary.

9. Conclusion

We introduced the concept of personal driving diary. We
proposed a system that automatically constructs event-based
annotations of driving videos, enabling efficient browsing and
retrieval of users’ driving experiences. The experimental results
confirmed that our system reliably detects driving events from
continuous video streams, generating a multimedia achieve of
driving events. We were able to observe that our probabilis-
tic approach explicitly considering spatio-temporal relations
among vehicle/pedestrian trajectories obtains a superior per-
formance compared to the state-of-the-art approach of utiliz-
ing bag-of-words of local spatio-temporal features. This event
recognition approach will potentially benefit other types of life-
logging/video-summarization systems that requires semantic
analysis of object trajectories.

Acknowledgments

This work was supported partly by the R&D program of
the Korea Ministry of Knowledge and Economy (MKE) and
the Korea Evaluation Institute of Industrial Technology (KEIT)
[The Development of Low-cost Autonomous Navigation Sys-
tems for a Robot Vehicle in Urban Environment, 10035354].
This work was partially supported by the R&D project of
Hyundai Heavy Industry Co., Ltd. The writing of this paper
was carried out in part at the Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

References

[1] US Patent 20040201697A1, “Black-box” video or still recorder for com-
mercial and consumer vehicles (2004).

[2] T. Gandhi, M. M. Trivedi, Pedestrian protection systems: Issues, survey,
and challenges, IEEE T ITS 8 (3) (2007) 413–430.

[3] M. S. Ryoo, J. Lee, J. H. Joung, S. Choi, W. Yu, Personal driving diary:
Constructing a video archive of everyday driving events, in: WACV, 2011.

[4] T. Hori, K. Aizawa, Context-based video retrieval system for the life-log
applications, in: ACM MIR, 2003.

[5] J. Gemmell, L. Williams, K. Wood, R. Lueder, G. Bell, Passive capture
and ensuing issues for a personal lifetime store, in: ACM CARPE, in
conjunction with ACM MM, 2004.

[6] A. R. Doherty, C. O. Conaire, M. Blighe, A. F. Smeaton, N. E. O’Connor,
Combining image descriptors to effectively retrieve events from visual
lifelogs, in: ACM MIR, 2008.

[7] A. J. Sellen, S. Whittaker, Beyond total capture: A constructive critique
of lifelogging, Communications of the ACM 53 (5) (2010) 70–77.

[8] L. Liao, D. Fox, H. Kautz, Extracting places and activities from gps
traces using hierarchical conditional random fields, International Journal
of Robotics Research 26 (1) (2007) 119–134.

[9] J. K. Aggarwal, M. S. Ryoo, Human activity analysis: A review, ACM
Computing Surveys 43 (2011) 16:1–16:43.

[10] C. Schuldt, I. Laptev, B. Caputo, Recognizing human actions: a local
SVM approach, in: ICPR, 2004.

[11] P. Dollar, V. Rabaud, G. Cottrell, S. Belongie, Behavior recognition via
sparse spatio-temporal features, in: IEEE Workshop on VS-PETS, 2005.

[12] M. S. Ryoo, J. K. Aggarwal, Spatio-temporal relationship match: Video
structure comparison for recognition of complex human activities, in:
ICCV, 2009.

[13] S. Hongeng, R. Nevatia, F. Bremond, Video-based event recognition: Ac-
tivity representation and probabilistic recognition methods, Computer Vi-
sion and Image Understanding (CVIU) 96 (2) (2004) 129–162.

[14] M. S. Ryoo, J. K. Aggarwal, Semantic representation and recognition of
continued and recursive human activities, International Journal of Com-
puter Vision (IJCV) 32 (1) (2009) 1–24.

[15] K. M. Kitani, T. Okabe, Y. Sato, A. Sugimoto, Fast unsupervised ego-
action learning for first-person sports videos, in: CVPR, 2011.

[16] A. Geiger, J. Ziegler, C. Stiller, StereoScan: Dense 3d reconstruction in
real-time, in: IV, 2011.

[17] R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
Combridge, 2003.

[18] J. H. Joung, M. S. Ryoo, S. Choi, W. Yu, S. Kim, Reliable object detection
and segmentation using inpainting, in: IROS, 2012.

[19] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, D. Ramanan, Object
detection with discriminatively trained part based models, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 32 (9) (2010) 1627–
1645.

[20] P. Viola, M. Jones, Rapid object detection using a boosted cascade of
simple features, in: CVPR, 2001.

[21] B. Wu, R. Nevatia, Tracking of multiple, partially occluded humans based
on static body part detection, in: CVPR, 2006.

[22] J.-Y. Lee, W. Yu, Moving object tracking in driving environment, in: In-
ternational Conference on Ubiquitous Robots and Ambient Intelligence
(URAI), 2011.

[23] J.-Y. Lee, W. Yu, Visual tracking by partition-based histogram backpro-
jection and maximum support criteria, in: IEEE International Conference
on Robotics and Biomimetics (RoBio), 2011.

[24] J. F. Allen, Maintaining knowledge about temporal intervals, Communi-
cations of the ACM 26 (11) (1983) 832–843.

[25] N. C. Utgoff, P. E. abd Berkman, J. A. Clouse, Decision tree induction
based on efficient tree restructuring, Machine Learning 29 (1997) 5–44.

[26] J. R. Quinlan, Induction of decision trees, in: Readings in Machine Learn-

12

(a) A vehicle sudden stop event caused by a pedestrian

(b) A vehicle sudden stop event caused by another vehicle in the front

(c) A sequence of two other vehicles overtaking the driving vehicle

(d) A sequence of two vehicle overtaken event - two other vehicles are overtaking the driving vehicle

Figure 19: Example video sequences of annotated driving events. First-person view videos of various driving events are shown.

13

ing, Morgan Kaufmann, 1990, originally published in Machine Learning
1:81–106, 1986.

[27] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving?
the kitti vision benchmark suite, in: CVPR, 2012.

[28] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, A. Zisserman, The
pascal visual object classes (voc) challenge, IJCV 88 (2) (2009) 303–338.

[29] D. Comaniciu, V. Ramesh, P. Meer, Kernel-based object tracking, IEEE
Transactions on Pattern Analysis and Machine Intelligence 25 (5) (2003)
564–577.

[30] J. Kwon, K. Lee, Visual tracking decomposition, in: CVPR, 2010.
[31] Z. Kalal, J. Matas, K. Mikolajczyk, P-N learning: Bootstrapping binary

classifiers by structural constraints, in: CVPR, 2010.
[32] T. B. Dinh, N. Vo, G. Medioni, Context tracker: Exploring supporters and

distracters in unconstrained environments, in: CVPR, 2011.
[33] J. C. Niebles, H. Wang, L. Fei-Fei, Unsupervised learning of human ac-

tion categories using spatial-temporal words, IJCV 79 (3) (2008) 299–
318.

14

