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ABSTRACT
In this paper, we present a methodology to estimate a de-
tailed state of a video scene involving multiple humans and
vehicles. In order to annotate and retrieve videos containing
activities of humans and vehicles automatically, the system
must correctly identify their trajectories and relationships
even in a complex dynamic environment. Our methodol-
ogy constructs various joint 3-D models describing possible
configurations of humans and vehicles in each image frame
and performs maximum-a-posteriori tracking to obtain a se-
quence of scene states that matches the video. Reliable and
view-independent scene state analysis is performed by taking
advantage of event context. We focus on the fact that events
occurring in a video must contextually coincide with scene
states of humans and vehicles. Our experimental results
verify that our system using event context is able to analyze
and track 3-D scene states of complex human-vehicle inter-
actions more reliably and accurately than previous tracking
systems.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.2.10 [Artificial Intelligence]: Vi-
sion and Scene Understanding—Video analysis

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
Automated and continuous estimation and analysis of hu-

mans, objects, and their relative states has long been a goal
of artificial intelligence, robotics, and computer vision. Par-
ticularly, in computer vision, detection and tracking of hu-
mans from closed-circuit television (CCTV) videos taken in
various environments have widely been studied in the last
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Figure 1: Example 3-D scene models of two different
image frames. Detailed analysis of configurations
of humans and vehicles using event context must
be performed, correctly distinguishing states of two
images with similar appearances.

several decades, proposing numerous promising approaches.
Recent works [13, 8] have shown successful results on human
detection and tracking in crowded environments.

However, tracking of humans itself is insufficient to an-
alyze complex interactions between humans and other ob-
jects, vehicles for example. In order to annotate and retrieve
videos containing activities of humans and vehicles, complex
movements of humans/vehicles and their relationships in a
dynamic environment (e.g. a crowded parking lot) must be
analyzed. The system must be able to identify detailed 3-D
states of all objects appearing in each frame. Such an analy-
sis is particularly essential for many important applications
including surveillance and military systems.

Our goal is to develop a methodology which is able to es-
timate the detailed state of a dynamic scene involving multi-
ple humans and vehicles. The system must be able to track
their configuration even when they are performing complex
interactions with severe occlusion such as when four persons
are exiting a car together. The motivation is to identify
3-D states of vehicles (e.g. status of doors) and their rela-
tions with persons, which is necessary to analyze complex
human-vehicle interactions (e.g. breaking or stealing a ve-
hicle). In addition, our methodology aims to identify the
seat of each person entering the vehicle (e.g. driver’s or pas-
senger’s), estimating his/her role and position even when
he/she is not visible. The challenges are derived from signif-



icant human-human occlusion and human-vehicle occlusion,
which previous human tracking systems had difficulties han-
dling. Figure 1 illustrates such difficulties.

Even though there have been previous attempts to process
videos of humans and vehicles, they have focused on recog-
nition of simple human-vehicle interactions. Instead of per-
forming detailed scene analysis in a complex environment,
they either assumed that the interactions are performed in
simple environments which have no (or little) occlusion [4,
9], or assumed that human-manual corrections of tracking
objects [5] are provided. The system proposed by Lee et al.
[6] was able to perform view-independent recognition of a
single person getting out of (or into) a vehicle, but it was lim-
ited in processing crowded human-vehicle interactions with
two or more people. This is due to their inability to an-
alyze states of scenes composed of multiple objects, failing
to process complex events composed of several fundamental
human-vehicle movements (e.g. ‘door open,’ ‘person get in,’
or ‘person get out’).

In order to achieve our goal, we design a probabilistic
algorithm to track humans and analyze their dynamic rela-
tionships with vehicles using event context. We focus on the
fact that many simple events can be detected based on low-
level analysis, and these detected events must contextually
coincide with human/vehicle state tracking results. That
is, simple events (e.g. a person approaching a vehicle) de-
tected during interactions can be used as key features (e.g.
it may be a sign of the person opening the door next) for
more robust tracking. Our approach updates the probabil-
ity of a person (or a vehicle) having a particular state based
on these basic events observed. The probabilistic inference
is made for the tracking process to match event-based ev-
idence. The event influences an interval of states, making
a certain set of states more probabilistically favorable then
the others for each time frame. For example, tracking a per-
son occluded by a door is difficult without any contextual
knowledge, but the detection of the event ‘a person open-
ing the door and going into the car’ may help the system
analyze his/her movements in these frames.

Our tracking problem is formulated as a Bayesian infer-
ence of finding the sequence of scene states with the maxi-
mum posterior probability. The scene state includes individ-
ual object states (humans and vehicles), object-object occlu-
sions, and specific parameters of objects, e.g. door position
and status. Our system estimates and tracks scene states
frame-by-frame using Markov Chain Monte Carlo (MCMC),
measuring the appearance similarity between hypothetical
3-D scene models and the observed image. The appearance
of the scene state is described in terms of joint 3-D models
and its projection is compared with the real image. In addi-
tion, as mentioned above, our probabilistic framework uses
event-based cues to update the prior probability of object
states, tracking highly occluded human-vehicle interactions
(e.g. a person opening a door) reliably. In order to handle
an event which is only detected ‘after’ its occurrence, we
propose an algorithm to correct past frames by traversing
past time frames.

The rest of the paper is organized as follows: Section 2
discusses previous works. Section 3 presents a detailed de-
scription of scene states. In Section 4, we formulate the
tracking problem as a dynamic Bayesian inference. Section
5 describes our 3-D human/vehicle joint models to evaluate
scene states. The concept of event context, which is required

for a reliable scene analysis, is introduced here as well. We
present how we use a MCMC algorithm to solve the formu-
lated tracking problem in Section 6. Section 7 shows our
experimental results. Section 8 concludes the paper.

2. PREVIOUS WORKS

Tracking. In previous tracking solutions following a Bayesian
framework, trajectories of objects are modeled as a sequence
of scene states describing the location of objects [11, 1, 3, 12,
13]. Zhao et al. [13] presented a model-based approach for
segmentation and tracking of humans in crowded situations
following a Bayesian framework. They computed prior prob-
abilities and joint likelihoods using 3-D human models and
calculated the posterior probability. Because of the enor-
mous complexity of solution space, they used a data-driven
MCMC for efficient sampling of the posterior probability to
search for the optimal solution.

Ryoo and Aggarwal [8] presented a new paradigm for op-
timal tracking under severe occlusion. The limitation of
most of the previous human tracking systems following the
hypothesis-and-test paradigm [1, 13] is that they are re-
quired to maintain an exponentially growing number of hy-
potheses over frames if they do not apply pruning. Under
severe occlusion, pruning can result in significant tracking
performance reduction, and the system was able to overcome
such limitations. However, the system only tracks humans
without considering any other objects or their relations. The
system was unable to analyze interactions between humans
and vehicles.

Human-Vehicle Interaction. In addition, there have been
several attempts to analyze interactions of humans and ve-
hicles. Ivanov and Bobick [4] used stochastic context-free
grammars to recognize human activities involving vehicles.
Joo and Chellappa [5] recognized activities in a parking lot
such as picking up and dropping off. Similarly, Tran and
Davis [10] proposed an approach using Markov logic net-
works to recognize vehicle-related events for surveillance.
However, the above-mentioned works have focused on the
‘detection’ of simple events rather than analyzing complex
scenes with severe occlusion. Park and Trivedi [7] presented
an approach to analyze moving-object interactions between
humans and vehicles, but scenes they analyzed were limited
to simple interactions with little occlusion as well.

Lee et al. [6] proposed a system to recognize human-
vehicle interactions such as exiting and entering. A shape-
based matching with a 3-D vehicle model is performed to
detect a vehicle, and regions-of-interest(ROIs) are extracted
from four door regions of the detected vehicle next. Under
the assumption that the interactions occur in the ROIs, their
system extracts motion and shape features in ROIs and an-
alyzes them to classify interactions. However, since they did
not consider spatial organizations (e.g. occlusion) between
door ROIs, their system was unable to process interactions
such as ‘two persons coming out of the car from doors on
the same side’. Furthermore, similar to [4, 5, 10], they did
not attempt to analyze detailed scene configurations of ob-
jects. They did not take advantage of event context and
were unable to analyze human-vehicle interactions in com-
plex environments.

The main contribution of this paper is that our method-
ology makes a detailed 3-D scene analysis for videos of dy-



namic interactions between humans and vehicles. We pro-
pose a new view-independent scene state tracking methodol-
ogy using joint 3-D models of humans and vehicles, designed
for complex scenes with severe human-vehicle occlusion. We
also believe that our paper is the first paper to take advan-
tage of event context for analyzing and tracking such scenes.

3. DEFINITION OF SCENE STATES
In this section, we define the ‘state’, S, of each scene. A

state is a complete description of objects’ locations, their
internal parameters, and relationships among them in each
scene image. The level of detail in the scene state defini-
tion directly influences the system’s level of understanding
image frames, and is important for constructing a scene anal-
ysis system. Throughout this paper, our system interprets a
video as an observation generated by a particular sequence
of scene states (Figure 2), and searches for the sequence
that best describes the dynamics of objects and their rela-
tionships in the video.

In many of the previous tracking paradigms (e.g. [11, 1]),
each state is modeled as a set of independent objects (with
particular parameters) present at each frame. Recently, the
tracking paradigm has been extended to explicitly consider
occlusion among humans [13, 8]. However, these previous
systems only consider relative depth-ordering among hu-
mans, limiting themselves on analyzing detailed states of
human-vehicle interactions such as “one car is parked in a
parking lot, its front left door is fully opened, and a person
is in the middle of getting out of the car through the door.”

In our approach, we extend the definition of the scene
state so that it can describe scene conditions more specifi-
cally. A scene state, S, is composed of the term C describing
individual object states and the term R specifying object-
object spatial relationships: S = (C, R). The object state
C is a set of cks, each describing the object class, track-
ing ID., and the class-specific parameters of the kth object:
ck = (clsk, idk, paramk) where clsk is the class of the object
and idk is its ID. Because there are two classes of objects
(i.e. a human and a vehicle) and they have different object
properties, the parameters for two classes (paramk) are de-
fined differently. R is defined as a spatial relationship of all
objects in C. R is composed of multiple rs, each describing
the spatial relationship between two different objects (i.e.
whether they are occluded, they are close to each other, or
they have any spatial relationships): R = ∪ci �=cj r(i,j) =
∪ci �=cj (type, ci, cj). For example, r(1,2) = (occ, c1, c2) illus-
trates that the object c2 is occluded by c1. As a result, our
scene state not only describes the locations of individual ob-
jects but also specifies their relative dynamics.

4. BAYESIAN FORMULATION
We formulate the tracking process of human-vehicle inter-

actions as a Bayesian inference of computing the posterior
probabilities of scene states:

Smax
(1,2,...) = argmaxS(1,...,n)P (S(1,...,n)|O(1,...,n)),

where Si is a scene state at frame i, Oi is an observation at
frame i, and n is the number of frames observed. That is, we
want to compute the optimum sequence of scene states that
matches with the observations best. P (S(1,...,n)|O(1,...,n))
can further be enumerated as the multiplication of prior

Figure 2: Example scene state transitions of ‘a per-
son entering a car’. Each Si is a scene state, and
(Ai, Ei) corresponds to an observed image frame.
The goal of our system is to identify a sequence of
states correctly describing the video.

probability and image likelihood:

P (S(1,...,n)|O(1,...,n)) = P (O(1,...,n)|S(1,...,n)) · P (S(1,...,n)).

For an efficient searching of the maximum-a-posteriori (MAP)
of a scene state in all frames, Smax

(1,...,n), we make a Markov
assumption:

P (O(1,...,n)|S(1,...,n)) · P (S(1,...,n))

= P (O1, ..., On|S1, ..., Sn) · P (S1, ...Sn)

= P (On|Sn) · P (O1, ..., On−1|S1, ..., Sn−1)

· P (Sn|Sn−1) · P (S1, ...Sn−1)

= P (On|Sn) · P (Sn|Sn−1)

· P (O(1,...,n−1)|S(1,...,n−1)) · P (S(1,...,n−1))
(1)

Therefore,

argmaxS(1,...,n)P (S(1,...,n)|O(1,...,n))

= {argmaxSnP (On|Sn) · P (Sn|Sn−1),

argmaxS(1,...,n−1)P (S(1,...,n−1)|O(1,...,n−1))

(2)

From Equation (2), P (On|Sn) ·P (Sn|Sn−1) needs to be cal-
culated to search MAP scene state in frame n. Intuitively,
P (On|Sn) is the likelihood between the observed image and
the scene state at frame n, and P (Sn|Sn−1) describes the
transition probability.

We further extend our Bayesian formulation to take ad-
vantage of ‘event context’ for reliable and detailed track-
ing of scene states. As mentioned in the previous sections,
event detection results can be treated as an important fea-
ture that benefits the tracking process greatly. The state
tracking problem must be formulated so that it takes into
account the fact that occurrences of events must meet with
the states of the scenes during the event. For example, if
the event of the person getting out of the car is clearly oc-
curring, then there is little possibility that the person was
out of the scene during this event.

While an observation O corresponds only to an image ap-
pearance A in most of the previous systems, we extend the
Bayesian tracking formula so that certain events between a
vehicle and a human change the prior probabilities of ob-
jects. Therefore, observation O is defined to include both
appearance A and event E.

P (On|Sn) · P (Sn|Sn−1) = P (An, En|Sn) · P (Sn|Sn−1)

= P (An|Sn) · P (En|Sn) · P (Sn|Sn−1)

∝ P (An|Sn) · P (Sn|En) · P (Sn|Sn−1) (3)

That is, we assume P (En) is uniformly distributed. In Equa-
tion (3), P (An|Sn) represents the similarity between an in-



Figure 3: An example appearance of a projected
3-D scene state (right image) corresponding to an
input image (left one). The 3-D scene model is con-
structed based on Sn, and is used for the appearance
likelihood computation.

put image and an object model. P (Sn|En) represents the
prior probability of an image frame n in a particular state
Sn, given an occurrence of an event E. If object states are
assumed to be independent on events as in previous sys-
tems, P (Sn|En) is the same as P (Sn). P (Sn|Sn−1) shows
the conditional probability of scene states in continuous two
frames.

By solving the formulated Bayesian inference problem, we
are able to estimate the most probable sequence of scene
states. Each of the probability terms described in this sec-
tion is modeled more explicitly in the following section.

5. PROBABILISTIC MODELING
In this section, we present the method to compute Bayesian

probability ‘given’ each scene state and image frame (e.g.
Figure 3). We present a 3-D scene (human and vehicle)
model which is used for calculating appearance likelihood,
and introduce our ‘event context’ that influences states’ prior
probabilities for contextual inference. The methodology to
search for the optimal scene state based on these models will
be discussed in Section 6.

5.1 Appearance Likelihood, P (An|Sn)

Our comprehensive definition of a scene state enables the
system to construct a virtual appearance of the scene given
its state. We use a 3-D model of a human (or a vehicle) to
represent an appearance of each individual object ck. The
motivation is to estimate the optimal appearance of an in-
dividual object ck in the scene as a 2-D projection of its
3-D model, so that it can be compared with the real im-
age to measure the appearance likelihood. Furthermore, the
appearance of multiple overlapped objects are modeled by
considering the spatial relationship of the objects R. Figure
3 shows an example 2-D projection of a 3-D scene model
consists of several 3-D human and vehicle models. We take
advantage of such appearance model to compare it with a
real image to measure the state likelihood. The camera pa-
rameters for the projection are assumed to be known.

5.1.1 3-D Vehicle Model
Our system assigns a 3-D model for each vehicle appear-

ing in the scene. Based on the parameters of the vehicle
state, a snapshot of the 3-D vehicle model is computed at
each frame to obtain its virtual appearance. A vehicle is
described with the following parameters: (x, y, size, orient,
tilt, type, door). x and y are the center xy-coordinates of
the vehicle, size is the resize factor of an 3-D template im-

Figure 4: (a) 2-D projections of 3-D vehicle models
representing door opening states. (b) 2-D projec-
tions of 3-D human models. The left four images
are from a standing model and the right four im-
ages are from a walking model.

age, orient is the orientation of the vehicle, tilt is the tilt
angle of the vehicle, type is the type of the vehicle (e.g. sedan
and sport utility vehicle), and door is the parameters of all
doors to describe how far the doors are open (closed, par-
tially opened, and fully opened). The orientation and tilt
angle of a vehicle are quantized and sampled for 5 degrees.
Sample 2-D projection images of a 3-D vehicle model with
an opened door are shown Figure 4(a).

5.1.2 3-D Human Model
Similar to our 3-D vehicle model, a 3-D model is as-

signed per person in the scene. A human is described with
the following parameters: (x, y, size, orient, tilt, type,
color histogram, velocity). x, y, size, orient, and tilt of a
human are defined similar to those of a vehicle. Two types of
human models are used: walking and standing. In addition
to the 3-D human shape model, a color histogram is used to
detect and distinguish human objects [13] in order to han-
dle non-rigid human appearances. For human objects, we
calculate color histogram on three regions of humans such
as a head, an upper body, and a lower body. The velocity
is also calculated for tracked human objects to be applied in
Kalman filtering. The orientation and tilt angle of a human
are digitized and sampled for 90 degrees and 5 degrees, re-
spectively. Each 3-D human model at a frame is generated
based on these parameters. Sample 3-D human models of
two types are presented in Figure 4(b).

5.1.3 Human-Vehicle Joint Model
A human-vehicle joint model is constructed per scene by

considering the spatial relationship (e.g. occlusion) R of hu-
mans and vehicles. We construct a complete 3-D scene
model composed of multiple 3-D object models, so that its
2-D projection may be compared with the real image. A
3-D scene model essentially is a set of 3-D human and vehi-
cle models whose relative spatial relationships are described
with R.

The process to obtain a projection of a joint scene model
(given a particular scene state) is as follows: 1) Build a
blank canvas whose size is the same as the real image for
representing a scene model. 2) Choose object ck which does
not occlude any non-chosen object, based on R. 3) Draw



Figure 5: Example occlusion types generated based
on the simulation. Representative occlusion types
describing relationships among human, door, and
vehicle body are presented.

the 2-D projection of the object ck. 4) Repeat 2) and 3)
until all objects are drawn. That is, we are essentially draw-
ing all objects into a blank image in a particular order so
that an occluded object is drawn before the object occlud-
ing it. Drawing each object can be done using the 3-D hu-
man/vehicle individual models. Note that spatial relation-
ship R specifies which object is occluded by which, enabling
the overall joint model projection process.

To construct a complete projection of a 3-D scene model,
object-object spatial relationship (R) should be calculated.
The spatial relationship between humans or between vehi-
cles can be obtained based on xy-coordinates of the objects.
Based on the following criteria, we build R for each Sn us-
ing its C value. The two criteria for deciding relations of
human-human occlusion and vehicle-vehicle occlusion are:
1) If the feet of person cp

k1 are located under the feet of per-
son cp

k2 and two people are overlapped in an image, person
cp
k1 occludes person cp

k2. 2) If the center of vehicle cv
k1 is

under the center of vehicle cv
k2, vehicle cv

k1 occludes vehicle
cv
k2. Human-vehicle occlusion is more complex to process

compared to the other two types of occlusion, due to the
existence of doors. A relation between an overlapped hu-
man and vehicle (i.e. which is occluding which) is estimated
by comparing C with several simulated occlusion types. As
shown in Figure 5, we construct several representative oc-
clusion types with a rough simulation, and compare which
occlusion type matches the given C of the scene Sn best.
The depth order of the best matching occlusion type is cho-
sen to be the relation between the human and the vehicle.

5.1.4 Joint Image Likelihood
Here, we present how we actually compute the appear-

ance likelihood based on the projection of the joint model
described above. We compare the expected appearance (i.e.
2-D projection) generated from the 3-D scene model with
a real image. We measure the distance between the image
and the model for each object ck, and sum them to compute
the state-image distance. That is, assuming conditional in-
dependence among appearances of non-occluded object re-
gions given the 3-D scene model, we can calculate P (An|Sn)
as

∏
ck

P (An|M(ck)), where M(ck) is a non-occluded region

of object ck obtained in Section 5.1.3. P (An|M(ck)) can be
measured by calculating the ratio of the number of fore-
ground pixels of M(ck) to the number of foreground pixels
on the region (P (FLk |M(ck)) and pixel-wise color distances
(P (CLk |M(ck))). Thus, P (An|Sn) can be calculated as
shown in Equation (4).

P (An|Sn) =
∏

ck

P (An|(ck, R)) =
∏

ck

P (An|M(ck))

=
∏

ck

{P (FLk |M(ck)) · P (CLk |M(ck))} (4)

5.2 Dynamics Likelihoods, P (Sn|En) ·P (Sn|Sn−1)

In this subsection, we model two probability terms that in-
fluence the posterior probability, P (Sn|En) and P (Sn|Sn−1).
Intuitively, the former corresponds to the probability of the
‘event context’ supporting the states, and the latter speci-
fies the influence of the previous frame state to the current
state. We discuss how we model each of these terms describ-
ing scene dynamics.

5.2.1 Event Context, P (Sn|En)

As we have formulated in Section 4, the probability of the
scene in a particular state Sn is highly dependent on its event
context. The occurrence of an event at a particular time
interval (i.e. a pair of a starting time and an ending time)
suggests that the states within the interval must follow a
particular distribution; the state sequence must contextually
agree with the event. Here, we model such probabilistic
distribution of the interval’s states for each event class (i.e.
type). The goal is to assign scene states that match event
detection results with higher probability values.

Let a pair (ts, te) be a time interval of an event e. Then,
we model the distribution P (Sn|En = e) for all states of ts <
n < te to have a distribution learned from training examples
of the event e. Similar to the case of appearance likelihood
computation, we assume conditional independence among
objects in the scene as follows:

P (Sn|En = e) =
∏

ci

P (ci|En = e) ·
∏

cj

P (cj |En = null)

(5)

where ci are the objects involved in the event e, and cj are
the other objects. We assume that the event time intervals
do not overlap, meaning that there’s only one (or no) event
going on at a particular time frame.

We model each P (ci|En = e) based on training data. We
assume that all states within the event’s interval show an
identical probability distribution, ignoring their temporal
order. Given a set of example state sequences corresponding
to the event intervals, P (ci|En = e) is learned by consider-
ing all observed ground truth states to be sampled from the
same distribution. More specifically, we model P (ci|En = e)
to have a 3-dimensional distribution where the first dimen-
sion specifies whether the object ci is in the scene and the
other two dimensions specify the relative XY-coordinates of
the object. As a result, the system makes certain spatial lo-
cations more probabilistically preferable than others for the
object during the event interval. Our event context has an
effect of narrowing down the state search space, making the
scene state tracking process more efficient and reliable.

In principle, our proposed methodology is able to cope
with any number of events as long as their state distributions
can be learned. However, in this paper, we have chosen the
three events which most effectively benefits the scene track-
ing process for computational efficiency. The defined events
are 1) a person gets out of a vehicle, 2) a person approaches
and opens a door of a vehicle, and 3) a person is sitting
inside a car. For example, in the case of the third event,
the distribution of the locations of the person ck during the
event’s time interval will be modeled to be centered at the
seat. Thus, our event context consideration process will up-
date all P (Sn|En) within the interval so that it penalizes the
states representing the location of the ck to be somewhere
else. All of this is done by learning the distributions based



on training examples.
We discuss more about how we actually detect events’

time intervals and take advantage of them in Section 6.

5.2.2 Previous State, P (Sn|Sn−1)

The term P (Sn|Sn−1) describes the probability of the ob-
jects (i.e. humans and vehicles) in a certain scene state Sn,
given their state at the previous frame n − 1. Our system’s
consideration on the previous state is done in a straight for-
ward fashion. Similar to previous tracking algorithms [13, 8],
our system assumes linear movements of objects. Based on
the XY velocity of the object, the distribution of P (Sn|Sn−1)
is modeled to have a Gaussian distribution centered at the
expected location using the previous state.

6. MAP SEARCHING BY MCMC
In this section, we present an algorithm to search the

scene state Smax
n providing the highest posterior probabil-

ity at time frame n. What we presented in Section 5 is a
method to compute the posterior probability of each scene
state Sn, and we now search for the optimum state among
them. A trivial approach is to perform brute force search-
ing. However, the high dimensionality of our solution space
requires a fast maximum-a-posteriori (MAP) searching al-
gorithm. Markov Chain Monte Carlo (MCMC) has been
widely used in complex tracking systems for efficient MAP
searching. We apply the following three procedures to search
MAP.

6.1 Markov Chain Monte Carlo Dynamics
Our MCMC algorithm searches for the best scene state

at each frame. It randomly applies one of the predefined
moves to Sn, iteratively updating the Sn for hundreds of
rounds while searching for the one with the highest prob-
ability. We have adopted a Metropolis-Hastings algorithm
with reversible jumps [2]. At each iteration, our Metropolis-
Hastings algorithm applies a randomly selected move to an
individual object state ck of Sn to obtain S′, which will ei-
ther be discarded or accepted as the new Sn. The initial
value for Sn is set to be Sn−1, and is iteratively updated.
The prior probability of selecting a human as ck to update is
0.9 and that of selecting a vehicle is 0.1. The list of MCMC
sampling moves are as follows:

1. Object addition hypothesis. Randomly select a
vehicle or person to be added in the scene. All pa-
rameters of an object are randomly chosen from prior
object parameter distribution, except for the position
(x, y). The center position of an object will be ran-
domly located on the foreground pixels.

2. Object update hypothesis. Change parameters of
objects based on their prior probability distributions.
For human objects, the values of x, y, size, type, and
orient are updated. The other parameters are auto-
matically calculated using the knowledge of the camera
model and the ground plane. For vehicle objects, the
values of x, y, size, orient, type, and door are updated
as well.

3. Object removal hypothesis. Randomly select a ve-
hicle or a person to be removed from the scene.

Figure 6: Example candidate scene states, S′,
obtained during our MCMC iteration. Various
MCMC sampling moves have been sequentially ap-
plied to search for an optimal scene state, Smax

n .

At every iteration of the dynamics, the system updates
object-object spatial relationship (R) from the updated in-
dividual object states (C). Therefore, the system can obtain
a new scene state (S′) and calculate P (On|S′) ·P (S′|Sn−1).
We accept the scene state S′ for Sn if the P (On|S′)·P (S′|Sn−1)
is larger than P (On|Sn) ·P (Sn|Sn−1). The experimental re-
sults are obtained after 200 iterations. Figure 6 shows an
example iteration of our MCMC process.

6.2 Event Detection
In order to search for the scene state providing the maxi-

mum posterior probability, events occurring during human-
vehicle interactions must be detected. The detected events
will enable the computation of the dynamics likelihood prob-
ability using event context (i.e. Subsection 5.2), making
our system able to track detailed scene states. In principle,
any of the existing activity recognition methodologies can be
adopted for the detection of events. In our implementation,
events are recognized using a rule-based elementary detector
with a simple criterion; our elementary detector is activated
(i.e. it detects an event) by checking whether the previous
state Sn−1 satisfies the encoded rules of the event. That is,
we say that the event is occurring if the rules are satisfied
and use this information as an event context to compute the
state probabilities.

Note that the detector is activated at a particular time
point, instead of fully providing events’ intervals. In gen-
eral, the detector is activated either at a starting time or
an ending time of the event depending on its characteris-
tics. No exact time interval is provided, and most events
are detected ‘after’ the event has occurred. This implies
that the probability computation using the event context
presented in Subsection 5.2 is difficult in a standard forward
inference process. It is not capable of recalculating the past
states even if the system later finds that an event has oc-
curred in the past frames. This situation occurs commonly
for the detectors which are difficult to compute exact occur-
ring time intervals (e.g. traditional hidden Markov models),
and hence we present a forward/backward probability up-
dating process in the following subsection. The motivation
is to dynamically update future (or past) frames that are
expected to be within the time interval until the event con-
ditions are violated.

The detailed detection criteria of our three events, “a per-
son getting out of a car,”“a person approaching and opening
a door of a vehicle,” and “a person sitting inside a car” are
as follows:

1. A person getting out of a car. The event of “a



person getting out of a car” is detected at time te,
which is the ending frame of the event’s time interval.
The detection rules are 1) a new person appears near
a door d and 2) the door d is open. That is, we assume
that the new person came out from the door.

2. A person approaching and opening a door of
a vehicle. The event of “a person approaching and
opening a door of a vehicle” is detected at time ts,
which is the starting time frame of the event’s time
interval. The detection rules are 1) a person from out-
side the scene boundary approaches a door d (i.e. their
distance becomes small) and 2) the door d was closed
at ts. The event continues until the person disappears
or the distance between the person and the vehicle be-
comes larger than a threshold.

3. A person sitting inside a car. The event of “a per-
son sitting inside a car” is detected at frame ts (i.e.
starting time), when the following conditions are sat-
isfied: 1) a person ck disappears near a door d at frame
ts and 2) the door d was opened at frame ts. The event
continues until the person reappears from the door.

6.3 Updates with Backward Tracking
As mentioned in the previous subsection, many events

tend to be detected ‘afterwards’, making the MCMC-based
MAP state computation with event context difficult. What
we present in this subsection is a methodology to support
our event context-based scene state tracking by compensat-
ing for such late detections using a backward re-tracking
process.

We say that an event has a forward characteristic if it is
detected at its starting time, and has a backward character-
istic if it is detected at its ending time. Basically, unless an
event having a backward characteristic occurs, our system
progresses the computation of MAP states in a forward di-
rection using the MCMC-based algorithm presented in Sub-
section 6.1. This process is similar to hidden Markov models
or other sequential state models. The system assumes that
no event is going on, if no forward event has been detected
(it may later correct it if an event with a backward charac-
ter is detected afterwards). If a forward event e is detected
at frame ts, the system records that the event is starting to
occur from the frame ts and considers the event context for
each frame n such that ts < n. This event context considera-
tion (i.e. En = e) is applied for future frames, as long as the
conditions of the event are satisfied, influencing P (Sn|En).

The backward probability update process is described as
follows. Once a backward event is detected, our system initi-
ates the tracking process in the backward direction, starting
from the frame te where the event is detected. That is, we
update (or re-estimate) the scene states of frame n such that
n < te. Leaving non-related objects cjs unchanged, the sys-
tem recalculates P (ci|En = e) for event related objects cis at
frame n and recomputes P (Sn|On) to search for the MAP
state. This backward traversal process is continued until
the event conditions are violated. For example, in the case
of the event ‘a person getting out of a vehicle’, the back-
ward traversal is continued until the person disappears in
the backward tracking process (i.e. until the system reaches
the frame where he/she comes out of the vehicle for the
first time). Figure 7 shows an example backward tracking
process. For computational efficiency, we concatenate the

Figure 7: An example backward tracking process
initiated by the event ‘a person exiting a car’.
The event triggers the backward tracking, success-
fully correcting previous scene states to contextually
agree with the event.

backward process for a certain amount of frames (i.e. de-
lays the initiation of the backward tracking mode), so that
the backward updates can be done at once without having
a duplicate update process.

7. EXPERIMENTAL RESULTS
We tested the system’s ability to track scene states from

videos of humans interacting with a vehicle. We generated
a dataset of 20 video sequences for our experiments. Each
video sequence includes one vehicle and one to four inter-
acting persons. Each person either enters into or gets out
of the car (or both) in a video at least once. The videos
were filmed at 12.5 frames per second with the resolution of
360 by 240 pixels. Five different actors participated in the
experiment, and a total of 2535 frames have been collected.

In each sequence, an actor interacts with a vehicle at least
once and at most twice. In the first 12 sequences, each actor
appearing in the scene (note that there can be 1 to 4 actors)
performs both ‘entering’ and ‘exiting’ interactions. In the
other 8 sequences, only one interaction is performed per ac-
tor. Among 20 sequences, 6 videos were taken with a single
actor, another 6 videos contain two actors, and the other 8
videos were taken with four actors. As a result, a total of
36 entering and 35 exiting interactions are performed. The
videos with four actors are particularly challenging, since
multiple persons participate in the interaction with the ve-
hicle body and doors, occluding each other as we can observe
from Figure 8(c).

We have measured the tracking accuracies of all persons
appearing in the videos. For each person, the system esti-
mates his/her trajectory using our approach and compares
it with its ground truth trajectory. The tracking process at
each time frame is said to be correct if the tracked bounding
box of the person overlaps more than 75% of the ground
truth bounding box. For each estimated trajectory, we find
the longest interval in which the object is correctly tracked.
We define the tracking accuracy as the length of this longest
interval divided by the length of the entire ground truth tra-
jectory. The tracking accuracies of persons are averaged to
measure the mean accuracy of our system.

We have compared our system with a baseline system sim-
ilar to [13], which considers occlusion among persons and
uses MCMC to solve the tracking problem. This system
does not take advantage of a 3-D vehicle model or event
context, and tracks objects purely in terms of human mod-
els. The objective of this implementation is to compare our
system with others to confirm the advantage of our new sys-



Figure 8: An example of tracking results on humans
interacting with a vehicle in various environments:
(a) one person exits and enters a car, (b) two people
enter a car, and (c) four people exit a car.

Table 1: Composite interaction recognition results
Scene Avg. Tracking Accuracy Number of

condition Previous system Our system Frames

1 person 85.4 % 92.0 % 852

2 persons 85.2 % 93.3 % 788

4 persons 67.5 % 81.5 % 895

Total 79.1 % 88.7% 2535

tem using event context.
Table 1 shows the overall tracking accuracies of the two

systems. Our approach clearly outperforms the baseline.
The previous method performed particularly worse for videos
with four persons. This is due to its inability to analyze de-
tailed scene states with severe human-vehicle occlusion. We
are able to observe that the use of 3-D scene state models
and event context benefits the system greatly. The tracking
accuracy of one-person scenes and that of two-person scenes
are observed to be similar. This result is because of the
fact that the occlusions in two-person scenes are not severe:
each of them usually gets in or out of the car from a differ-
ent direction. Therefore, the difficulty of tracking humans
in one-person scenes was similar to the one in two-person
scenes.

Figure 8 shows example tracking results of human-vehicle
interaction videos. Actors appearing in the videos are tracked
very accurately by our improved tracking system. Tracking
of one person in Figure 8(c) failed at the beginning of his
appearance, but the system was able to recover quickly.

8. CONCLUSIONS
We have presented a methodology for analyzing a sequence

of scene states from videos of human-vehicle interactions.
We developed a probabilistic framework for scene state track-
ing using 3-D scene models, identifying detailed configura-
tions of humans and vehicles appearing in videos. Further-
more, we introduced the concept of event context which ben-
efits the scene state analysis process greatly. Interplays be-
tween event detection and state tracking are explored prob-
abilistically, providing better results in the experiments.
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