

Abstract

The paper describes a methodology for the recognition

of high-level group activities. Our system recognizes group
activities including group actions, group-persons
interactions, group-group interactions, inter-group
interactions, and their combinations described using a
common representation scheme. Our approach is to
represent various types of complex group activities with a
language-like representation, and then to recognize
represented activities based on the recognition of activities
of individual group members. A hierarchical recognition
algorithm is designed for the recognition of high-level
group activities. The system was tested to recognize
activities such as 'two groups fighting', ‘a group of thieves
stealing an object from another group’, and ‘a group of
policemen arresting a group of criminals (or a criminal)’.
Videos downloaded from YouTube as well as videos that we
have taken are tested. Experimental results shows that our
system recognizes complicated group activities, and it does
it more reliably and accurately compared to previous
approaches.

1. Introduction
A significant amount of research has addressed the

recognition of human activities recently. Researchers are
particularly successful in recognizing the activities of one
individual or between two individuals, such as pushing and
fighting. Notably, we in our previous work [8] have
presented a representation scheme to describe high-level
human-human interactions based on their sub-events, and
proposed a hierarchical algorithm to recognize represented
interactions. Not only simple interactions such as punching,
kicking, and shaking hands are recognized, but also
recursive interactions like ‘fighting’ between two persons
are recognized with our previous framework. In this paper,
we take our next evolutionary step in human activity
recognition: recognition of group activities.

Group activities are the activities that can be
characterized by movements of members who belong to

one or more conceptual groups. Recognition of groups and
their activities will make detection of high-level events
possible, which are semantically meaningful when overall
actions of multiple persons are considered jointly but not
when they are considered individually. Automated
recognition of suspicious groups and their activities such as
‘a group of thieves robbing the bank’ are essential for the
construction of high-level surveillance systems. The
analysis of movements and plays in team sports also
becomes possible with the group activity recognition
system. The semantic understanding of military operations
and joint works is another application of group activity
recognition.

In this paper, we present a novel methodology for the
recognition of high-level group activities. Our approach is
to encode human knowledge on the structure of group
activities, and make the system recognize group activities
based on their representation hierarchically. That is, we are
crossing the horizon of previous description-based human
activity recognition approaches [5,10] toward the
recognition of group activities. We believe that ours is the
first paper presenting general recognition methodology for
group activities with complex temporal, spatial, and logical
structures. We focus on both a new format for the group
activity representation and a new recognition algorithm.

Unlike previous group activity recognition systems, our
system is designed to represent and recognize as broad
range of high-level group activities as possible (including
group actions, group-persons interactions, group-group
interactions, and inter-group interactions), making the
system more robust and generally applicable. Khan and
Shah recognized group activities based on rigidity
formation [6]. They focus on recognizing spatially
structured groups and their activities such as a parade
which is a type of ‘all members of a group showing
identical action’. Researchers have recognized inter-group
fighting (a fight between two members of a group) which
has been labeled as a group activity in PETS’04 dataset [7].
Zhang et al. [11] recognized inter-group interactions
among limited number of participants in a meeting room
using multi-layered hidden Markov models. Gong and

WMVC
2008

IEEE Workshop on Motion and Video Computing
Copper Mountain, CO, January 2008 (WMVC '08)

WMVC
2008

Recognition of High-level Group Activities Based on

Activities of Individual Members

M. S. Ryoo and J. K. Aggarwal
Computer & Vision Research Center / Department of ECE

The University of Texas at Austin
{mryoo, aggarwaljk}@mail.utexas.edu

Xiang [3] successfully recognized interactions between
multiple objects using dynamic probabilistic networks.
Their system also focuses on only one class of group
activity, inter-group interactions, and the number and types
of participants are also fixed, as in [11]. Similarly,
Cupillard et al. [2] recognized inter-group interactions with
fixed number of participants. In addition, most of previous
works assume that group members are spatially separable
from non-members in order to recognize group activities.

Our system describes group activities in terms of a
formal representation using context-free grammar (CFG)
as its syntax. A group activity is decomposed into several
single person actions and person-person interactions
among members of groups, and our language-like
representation describes the activity by attaching universal
quantifiers (∀) and/or existential quantifiers (∃) to those
sub-events. For example, the group activity ‘all members
are carrying their baggage’ must be represented by
applying the universal quantifier to the individual activity
‘a person carries baggage’, while ‘one member of the group
raises his/her hand’ must be represented by applying the
existential quantifier to ‘a person raises his/her hand’.
Spatial constraints such as ‘all members of one group
should be spatially close’ must also be listed as well.

Our system recognizes group activities by searching for
individuals whose activities satisfy the representation of the
group activity. That is, our system does not rely on the
correct segmentation of groups based on spatial
information like most of previous systems. In our approach,
individual activities of persons in the scene are first
recognized, and then used for the group activity recognition
by comparing them with the representation. For example,
recognition of the group activity ‘all members are carrying
their baggage’ is done by detecting individuals who
performed the activity ‘a person carries baggage’ at the
same time. As a result of the algorithm, group activities and
groups performing the group activities are recognized
simultaneously. Figure 1 shows example group activities.

2. Representation
The approach we take to represent high-level group

activities is to decompose them into several simpler
activities, which we call ‘sub-events’ of the activity.
Sub-events of a group activity can be actions of a group
member, interactions between the members, and/or other
group activities of the same group. We first discuss
different types of group activities that our system
represents, and then present formal representation syntax.

2.1. Types of group activities
We categorize group activities by considering the

number of participating groups, the number of participants
not in any group, and types of the activities’ sub-events.

Group actions. If a group activity can be specified only
using actions of its group members, we call it a ‘group
action’. ‘Marching’ is a typical example of group actions:
the activity can be characterized as all group members
showing one type of individual action, ‘moving’. The
‘marching’ can be denoted as March(Group G1).

Group-persons interactions. If a group as well as persons
outside of the group participates in the activity, we denote it
as a ‘group-persons interaction’. The activity ‘march by
signal’, which indicates an activity where a group starts
marching after getting an order from a commander outside
the group, is an example. ‘March by signal’ is denoted in
the form of MarchBySignal(Group G1, Person p1).

Group-group interactions. Two groups fighting and two
groups having a conversation are good examples of
group-group interactions. A group-group interaction can be
composed of the actions of a group member of any group
and/or interactions between two members from each group.
A group-group fighting can be notated as GroupGroup-
Fighting(Group G1, Group G2).

Inter-group interactions. ‘Inter-group interactions’ are
group activities that involve interactions between members
of a same group as sub-events. A group activity indicating
that two members of a group are fighting is an example of
inter-group interactions: InterGroupFighting(Group G1).

Combinations. Our system is designed to represent group
activities of above-mentioned four elementary types as well
as more complicated activities that can be decomposed into
several group activities of the elementary types (i.e.
interactions between multiple groups and persons).

2.2. Group activity representation
We present general representation syntax that is able to

describe group activities of any of above-mentioned
categories hierarchically. The concept of the ‘member
variables’ and the ‘group spatial predicates’, which have
not been covered by any of previous activity representation
methodologies, are newly introduced to denote
participating group members and to describe spatial
constraints needed among the group members. Based on
new concepts and predicates, we represent a group activity
in terms of time intervals of activities of individual

Figure 1: Snapshots of group activities. The left figure shows a
group-group interaction, ‘group stealing’. The right figure shows
a group-group interaction, ‘group arresting’.

members (or other simpler group activities) composing it,
the relationship specifying the temporal structure among
sub-events, and necessary spatial conditions among group
members. Detailed context-free grammar (CFG) syntax of
our representation is presented.

Member variables. A member variable is a variable used
to denote one arbitrary member or all members of a group.
We attach an existential quantifier (∃) or a universal
quantifier (∀) to a member variable, in order to describe
conditions that have to be satisfied by one member or all
members of a group. If an existential quantifier is attached
to a member variable, there has to be at least one individual
member of the group who can be associated with the
member variable to make related conditions to be true. If a
universal quantifier is attached, all members of the group
must be able to be associated with the member variable.
That is, by using member variables as participants of
sub-events, we are able to describe sub-events need to be
performed by all group members or by any one member. In
addition, sub-events need to be performed by the same
individual may also be specified by using the same member
variable as their participant. Our syntax to represent a list of
member variables and its example are presented below.

MemberVariableDefs -> MemberVariableDef ","
 MemberVariablsDefs
 | MemberVariableDef
MemberVariableDef -> Quantifier person_var "in"
 group_var
Quantifier -> "∀" | "∃"
Ex> ∀ a in G1, ∃ b in G2, ∃ c in G3, ...

Time intervals. A time interval specifies a starting time
and an ending time of an occurring sub-event. A group
activity is composed of multiple sub-events whose
participants are specified using member variables and/or
other non-member participants. In order to describe
temporal structure of a group activity, both the sub-events
composing the group activity and their time intervals must
be listed. The formal syntax is as follows:

TimeIntervalDefs
 -> "def" "(" time_var "," Activity ")"
 | "list" "(" "def" "(" time_var "," Activity ")" ","
 TimeIntervalDefs ")"
Ex> list(def(t1, Carrying(a)), def(t2, ...))

Predicates. Predicates are binary functions that are used to
describe temporal, spatial, and logical relationships needed
for the activity. Our system adopts Allen’s temporal
predicates (before, meets, overlaps, during, starts, finishes,
and equals) [1], which have been widely used to specify
temporal structures. Spatial predicates between individual
persons, near and touch, are also used. Spatial predicates
for describing the spatial status of a group are newly
designed and added for the representation, whose definition
is listed below. The predicate dense and sparse describe

whether all group members are close to each other or not.
Logical predicates (and, or, and not) are defined in a
conventional manner to concatenate multiple predicates.

dense(Group G, threshold) <=>
 Relative distance between any two group members < threshold
sparse(Group G, threshold) <=>
 Relative distance between any two group members > threshold

Therefore, CFG syntax to represent necessary
relationships of a group activity is defined using predicates.
Note that the special time interval ‘this’ is used to specify
the temporal relationship between the defining group
activity itself and its other sub-events.

Relationship
 -> Logical-Predicate "(" Relationship ","Relationship")"
 | Temporal-Predicate "(" "‘this’" "," time_var ")"
 | Temporal-Predicate "(" time_ var "," "‘this’" ")"
 | Temporal-Predicate "(" time_var "," time_ var ")"
 | Individual-Spatial-Predicate "(" person_var ","
 person_var "," int ")"
 | Group-Spatial-Predicate "(" group_var "," int ")"
Individual-Spatial-Predicate -> "near" | "touch"
Group-Spatial-Predicate -> "dense" | "sparse"

As a result, the full representation is composed of three
main parts: a list of member variables MemberVariable-
Defs, a list of time intervals of sub-events TimeIntervalDefs,
and a list of relationships Relationship. Participants,
member variables, and time intervals defined through
participants, MemberVariableDefs, and TimeIntervalDefs
are used in the term Relationship to describe necessary
relationships. Three terms are integrated in our final CFG
syntax where GroupActivityDefine is the starting variable.
Example representations of the group activity ‘a group of
people are carrying a large object by command of another
person’ and ‘group fighting’ are presented as well.

GroupActivityDefine
 -> name "(" participants ")" "="

"{" MemberVariableDefs "," TimeIntervalDefs ","
 Relationship "};"

Ex> CarryByCommand(Group G1, Person p1) = {
 ∀ a in G1,
 list(def (t1, Carry(a)), def(t2, Command(p1))),
 and(equals(t1, this), meets(t2, t1))
 };

GroupGroupFighting(Group G1, Group G2) = {
 ∀ a in G1, ∃ b in G2,
 list(def(t1,Approach(G1, G2)), def(t2,Fight(a, b)),
 and(and(dense(G1), dense(g2)),
 and(equals(t1, this), meets(t1, t2)))
 };

A group activity can always be decomposed into four
elementary types if and only if member variables can be
divided into independent pairs and/or singles. That is, we
limit a member variable to have interaction with only one
other variable to make the recognition process tractable.

3. Recognition
This section discusses an algorithm to recognize

high-level group activities that have been represented using
the CFG syntax. Our recognition process conveys the
hierarchical structure of our group activity representation,
recognizing group activities based on the recognition
results of their sub-events. Once candidate time intervals of
sub-events are detected, the system searches for valid
combinations of time intervals that satisfy temporal
constraints of the group activity. Next, the system checks
whether persons who performed the sub-events can form
correct groups or not. Only when valid groups satisfying
the spatial constraints can be constructed with participants
of the sub-events, the system is able to deduce that the
group activity occurred with the sub-events.

3.1. Base case: recognition of individual activities
The base case of the group activity recognition is the

recognition of individual activities. High-level group
activities are represented in terms of activities of individual
persons and other simpler group activities (which
themselves can be decomposed as well), suggesting that the
recognition of human actions and human-human
interactions must be performed first. We in our previous
work have presented an activity recognition methodology
which is able to recognize human-humans interactions such
as a ‘fighting’ [8]. In this subsection, we construct new
low-level components of the system for object recognition
and motion estimation, in order to enable the system to
detect human interactions (i.e. base cases) more reliably
with our previous human activity recognition system.

For each frame, the low-level of our system first
performs background subtraction to segment foreground
regions. Since one foreground region may contain multiple
persons due to their occlusions, our system takes advantage
of head detection using object detector developed by Viola
and Jones [9]. Persons’ bounding boxes are placed
considering foreground regions as well as positions of
detected heads. This person-segmentation method is
similar to that of W4 [4], which also takes advantage of
head detection for segmenting occluded persons. Once a
person is correctly segmented, color histograms are used to
classify the type of the person (e.g. policeman vs
pedestrians), if needed. Viola and Jones’s detector [9] is
also used for objects (e.g. laptop computer). Hidden
Markov models are constructed to estimate motion of each
individual, where width/height ratio and the center position

of a bounding box are used as features for the HMM. These
results are passed to the higher-level of the system,
recognizing human actions and interactions.

3.2. Hierarchical temporal constraint matching
The recognition of group activities is done using a

hierarchical algorithm from bottom to top. We discussed
the recognition of base cases in the previous subsection.
For all non-base cases, i.e. all group activities constructed
based on individual activities, the sub-events of a group
activity are recognized first and temporal relationship
among detected time intervals are analyzed next. Once a
group activity is recognized, the results can hierarchically
be used for the recognition of a higher-level group activity
that contains the activity as its sub-event.

The problem of checking whether detected time intervals
satisfy a temporal relationship or not is one of the
traditional constraint satisfaction problems. An activity can
occur multiple times, suggesting that each sub-event has
multiple valid time intervals. Therefore, if r is the average
number of time intervals of one sub-event and n is the
number of sub-events, there are rn possible combinations of
time interval associations. The goal of the system is to
search for combinations that satisfy the temporal
relationship of a represented group activity.

In order to detect such combinations efficiently without
spending an exponential amount of computations, we
model the relationship of a group activity as a set of trees:
We first enumerate relationships to make them in DNF
(disjunctive normal form). Each clause of DNF is a
conjunction of temporal relations, and we construct an
undirected graph for each clause where variables indicating
time intervals are nodes and predicates between them are
edges. In the case when temporal relationships for a group
activity contain a cycle, our system removes the cycle (i.e.
converts to a tree) to perform the recognition process,

CONSTRAINT_CHECK(Activity a) {
 Let tr be a tree where time interval variables are
 node and temporal predicates are edges;
 Node r = root node of tr;
 ASSIGN(r);
 if (all nodes of tr is assigned) return true;
 else return false;
}
ASSIGN(Node n) {
 Node p = n’s parent;
 List a = List of candidate time intervals that can be
 assigned to n;
 if (p==null) n.a = a;
 else{ for (each time interval t in a)
 for (each time interval pt in p.a)
 if (t and pt satisfies temporal relationship)
 add t to n.a; }
 for (each node c who is a child of n) ASSIGN(c);
}

Figure 3: Pseudo code of the temporal constraint check algorithm

Figure 2: Low-level processing of the system.

Fore-
ground

Head
Detect

Bound-
ing box

which is an approximation of the actual temporal
constraints. With the assumption of a tree structure of
temporal relationships, searching for a valid combination
can be done in polynomial time. Figure 3 shows detailed
pseudo code of our time interval detection algorithm. For
each tree, our algorithm searches for valid combinations by
assigning time intervals to nodes (i.e. time variables) from
the root to leaves.

The algorithm treats sub-events done by any persons as
valid candidate time intervals as long as they satisfy the
temporal constraints. However, in order for a group activity
to occur, the sub-events associated with the same member
variable (or same participant of the group activity) must be
done by the same person. Therefore, our system discards
time interval combinations which violate the constraint that
‘sub-events associated with the same member variable
must be done by the same person’.

As a result, valid combinations are detected, and
individuals are assigned to a member variable for each
combination. Individuals who performed a sub-event are
assigned to the member variable corresponding to the actor
of the sub-event. We must note that more than one person
can be assigned to each member variable, since multiple
persons can perform an identical sub-event in the same time
interval. In the case when a sub-event is an interaction
between two member variables, a person assigned to one
member variable may depend on a person assigned to the
other member variable. In this case, instead of assigning
persons to each member variable independently, our system
assigns pairs of persons to two member variables jointly.

Once valid time intervals of sub-events are calculated,
time intervals of a group activity itself can also be
computed by calculating the range of the special time
interval ‘this’. The time complexity of the overall algorithm
is O(r2 + m) where m is the total number of combinations
satisfying temporal constraints.

3.3. Group actions and group-persons interactions
Detected time intervals of sub-events form a group

activity only when their temporal constraints are satisfied,
and only when a group can be formed with persons
assigned to member variables. If a valid group can be
formed, our system can conclude that the group activity
occurred in the calculated time interval with a group of
individuals who executed the sub-events. That is, our
system is defining a group as a set of individuals who
satisfy the representation of a group activity, and
recognizing the group activity by searching for such set.
Therefore, in this subsection, we present an algorithm to
calculate a valid group from individuals assigned to
member variables of a group action or a group-persons
interaction.

For each member variable, the system computes the

range of a valid group so that it includes persons assigned
to the member variable or excludes persons not assigned,
depending on the type of the quantifier. If the quantifier
attached to the member variable is an existential quantifier
(∃), the range of a group is decided to be any set of
individuals that contains at least one of the persons who are
assigned to the member variable in a given time interval. If
the quantifier is a universal quantifier (∀), the group must
be a subset of all individuals assigned to the member
variable, implying that the maximum range of a valid group
is the set of all individuals assigned.

We represent the range of a group calculated for each
member variable as follows, in terms of a set with tags
attached to its member. For a member variable with an
existential quantifier, the valid group is represented as a set
of entire persons with a uniform tag attached to the persons
who are assigned to the member variable. That is, if there
are six persons, and person #1, person #2, and person #5 are
assigned to one member variable, the valid range of it is
represented as {1c, 2c, 3, 4, 5c, 6}. Any subset of the
represented set can become a valid group, if and only if it
contains at least one member with the tag. If a universal
quantifier is attached to the member variable, the range is
simply represented as a set of persons assigned to the
variable. For example, if person #1, person #2, and person
#6 have been assigned, the valid range is represented as {1,
2, 6}. Again, we can see that any subset of a represented set
is a valid group.

Once a valid range of the group has been represented for
each member variable, the system combines all of them to
calculate the final range. The system computes a
conjunction of ranges calculated by the member variables,

Algorithm in sub-section 3.1 verified that sub-events done
by following subjects satisfied temporal constraints:
 Holding: Person #1, #2, #5
 Moving: Person #1, #2, #6

Calculate valid ranges of
the group based on the
sub-event ‘holding’.

1
2
3
4
5
6

1
2
3
4
5
6

or

1
2
3
4
5
6

or

1
2
6

1
2
6

Do conjunction.

or

Figure 4: Example process flow of the recognition of group
action ‘group carry’. The ‘group carry’ is represented as all group
members (∀) ‘moving’ into one direction while any of group
member (∃) ‘holding’ the object.

1
2
6

Calculate valid ranges of
the group based on the
sub-event ‘moving’.

3
4
5

since all member variables belong to one group in case of a
group action or a group-persons interaction. That is, the
system is detecting the group that is within the ranges
calculated for member variables. For example, if the range
of one member variable of a group action is represented as
{1c, 2c, 3, 4, 5c, 6} and that of the other member is {1, 2, 6},
the conjunction of them {1c, 2c, 6} represents the total range
of a valid group. The example process of our algorithm is
presented in figure 4. If two ranges calculated with
existential quantifiers such as {1c, 2c, 6} and {1, 2d, 6d} are
combined, two tags need to be maintained as {1c, 2c,d, 6d}.
Any subsets containing both tags c and d are valid.

If a group action or a group-persons interaction contains
simpler group activities as its sub-event, the system again
computes the conjunction of ranges calculated based on the
member variables and a range of the group performing the
sub-event. The overall computation can be done in O(k)
where k is the number of persons appearing in the scene.

Spatial constraints are further applied to get the final
group who has performed the represented group activity.
For example, if the group must satisfy the spatial constraint
‘dense’, the represented range will be divided into several
clusters that are spatially separated.

3.4. Group-Group and inter-group interactions
Unlike group actions or group-persons interactions,

sub-events of group-group interactions can be associated
with two member variables of two different groups. This
suggests that the valid range of one group is dependent on
the range of the other group. In order to calculate the valid
ranges of two groups based on member variables of a
group-group interaction, our system decomposes a list of
member variables into multiple independent pairs and
singles. Because of the characteristics of our representation,
one member variable is dependent at most on one other
variable, which makes the division of the full list of
member variables into several independent pairs possible.
Our system analyzes valid ranges of two groups for each
pair, and then combines them by finding a conjunction of
ranges calculated.

We present an algorithm to calculate and represent valid
range of each pair of two dependent groups. Types of
quantifiers attached to two member variables decides
characteristics of valid ranges, dividing them into four
different cases: ∃∃, ∀∃, ∀∀, and ∃∀. A method to
calculate a conjunction of calculated ranges is also
presented. After calculating the final ranges of two groups,
spatial relationships are checked as in subsection 3.2.
Inter-group interactions can be interpreted as a special case
of group-group interactions, where two participating
groups must be an identical group.

Case 1: ∃∃. The algorithm presented in subsection 3.1
assigns pairs of persons to pairs of two dependent member

variables. In the case when two existential quantifiers are
attached to two member variables, at least one assigned pair
of persons has to be allocated for two groups by definition.
For example, suppose the ‘group trading’ activity of two
groups are defined as having a sub-event of ‘trade’
interaction between at least a pair of individual members
from each group: If persons (#1, #5) and (#4, #6) are pairs
of persons who performed the sub-event ‘trade’, then (G1
must contain person #1 and G2 must contain person #5) or
(G1 must contain #4 and G2 must contain #6). Our system
represents these ranges of two groups in terms of an array,
where tags similar to that of section 3.2 are attached to cells
of an array. In the above example, only S[1,5] and S[4,6] of
the array S will be set to the tag value c.

Case 2: ∀∃. This is the case where all members of the first
group must have more than one corresponding person in
the other group. That is, any person i of the first group has
some corresponding person j in the other group, where the
pair (i, j) is an assigned pair of two member variables. For
example, a group activity representing all members of one
group attacking someone in the other group is this case.
Our system represents a valid range of two groups as two
sets with specific tags attached to members, similar to the
case of ‘group action’. While the first group is represented
as a set of members who has at least one corresponding
persons in the other group, the other group is represented as
a set of member with tags indicating the corresponding
person in the first group. For example, if (1, 3), (1, 5), and
(2, 4) are assigned pairs of variables, the valid range is
represented as {1, 2} and {3c_1, 4c_2, 5c_1, 6}. Any pair of
subsets of two sets is a valid group, if and only if the
following constraint is satisfied: For each member in the
first group, at least one member in the second group must
have the tag corresponding to it. For example, {1} and {3,
6} is a valid pair of groups, while {1, 2} and {3, 6} is not
since it is missing c_2.

Case 3: ∀∀. In this case, a pair of any member of the first
group and any member of the second group must be an
assigned pair of two member variables (e.g. group-
group fighting). Our system uses a greedy heuristic
approximation to represent all possible ranges of valid
groups. The system finds multiple candidate pairs of sets
that do not overlap each other. This is done by iteratively
detecting a valid pair of sets which makes any pair of their

Figure 5: Diagram illustrating member relationships in 4 cases.

1
2
3

4
5
6

1
2
3

4
5
6

1
2
3

4
5
6

1
2
3

4
5
6

Case1:
∃∃

Case2:
∀∃

Case3:
∃∀

Case4:
∀∀

subsets to be valid as well. For example, if two groups {1,
2} and {3, 4, 5} are detected to be one of the valid ranges,
their subsets {1} and {3, 5} also forms a valid pair.

Case 4: ∃∀. Case 4 can be thought as a soft version of
case 3. In case 4, only one member in the first group needs
to be associated with all members in the second group. An
identical algorithm can be applied for the detection of valid
ranges. The first group is represented as a set of all
members, and a tag attached to the members who are
associated with all members in the second group. The
second group is simply represented as a set of members
associated with the member in the first group. For example,
if person #1 and person #2 are associated with all members
in {3, 4, 5}, it can be represented as {1c, 2c, 6} and {3, 4, 5}

Combinations. We take a conjunction of decomposed
pairs of member variables. As a result of a conjunction, the
system maintains two types of representations. An array
representation generated by case 1 and set representations
generated by cases 2, 3, and 4. Only one array is needed to
represent conjunctions of multiple arrays produced by case
1. Case 2 always generates only one pair of ranges. On the
other hand, case 3 and case 4 generate multiple candidate
pairs of two sets as a valid range, suggesting that their
conjunction also generates multiple pairs. The maximum
number of set representations constructed as a result of
conjunction is k2 where k is the number of persons in the
scene, since sets constructed in case 3 and 4 do not overlap
each other. Therefore, the complexity of calculating valid
range of groups is O(k2). When calculating a conjunction of
ranges, tags attached to members of sets must always be
preserved. For example, if pairs of ranges {1, 2}-{3c_1, 4c_2,
5c_1, 6}, {1, 2}-{3d_1, 4d_1, 6d_2}, and {1e, 2, 7}-{3, 4, 5, 6}
are combined, the result is {1e, 2}-{3c_1, d_1, 4c_2, d_1, 6d_2}.
That is, {1}-{3, 4} is a valid pair of groups, while {1, 2}-{3,
4} is not since the second set is missing d_2.

4. Experiments
We implement the system presented in this paper, and

test it to recognize high-level group activities such as
‘group stealing’ and ‘group arresting’. Notably, we are
using CCTV videos that have been downloaded from
YouTube as well as videos that we have taken in various
environments. We implement and test our group activity
recognition system for various types of group activities,
while measuring the performance of our system compared
to the previous recognition approach.

We have represented seven different types of group
activities, and tested the system with videos downloaded
from YouTube and videos taken with total of six
participants in various environments. ‘Group move’,
‘group carry’, ‘group carry by signal’, ‘group fighting’,
‘inter-group fighting’, ‘group stealing’, and ‘group
arresting’ are the activities tested. ‘Group move’ indicates a

group of people moving in the same direction and ‘group
carry’ describes a group of people carrying a table or other
large objects. We already have defined and represented
‘group carry by signal’ and ‘group fighting’ in section 2.2.
‘Inter-group fighting’ is an inter-group version of group
fighting. ‘Group stealing’ is a complex group-group
interaction where one of thieves is stealing an object (e.g.
laptop) while other thieves are distracting a group of
owners of the object. ‘Group arresting’ indicates the
situation where policemen are arresting a group of
criminals. A total of 35 sequences, five videos per group
activity, are tested to measure the performance.

The videos were taken in 15 frames per second in the
resolution of 320 *240. As a result, approximately 8000
frames were obtained from 35 sequences. We have
randomly chosen 800 frames of sub-sequences, in order to
train the object detector (i.e. head detector) and HMM for
motion estimation. The representation of group activities is
encoded by a human expert, following our representation
scheme. For example, the representation of ‘group stealing’,
a complex group activity with 3 quantifiers, is as follows:

GroupStealing(Group Thieves, Group Owners) = {
 ∃ a in Thieves, ∀ b in Owners, ∃ c in Thieves,
 list(def(t1, Approach(Thieves, Owners)),
 list(def(t2, TakeObject(a)),

def(t3, Distract(c, b)))),
 and(and(before(t1, t2), during(t2, t3)), equals(t2, this))
 };

Once the low-level part of our system is trained and the
representation is encoded by the human expert, our group
activity recognition system behaves fully automatically.
The system was tested on all 35 sequences.

Figure 6 shows the example sequences of group
activities which our system successfully recognized.
Bounding boxes have been drawn for each person. Groups
detected as a result of our algorithm are indicated using the
color of bounding boxes. Figure 7 shows example time
interval recognition results of the top-most sequence, the
YouTube downloaded video of ‘group stealing’.

Table 1 illustrates the final recognition accuracy of our
algorithm. The type of each group activity is specified: GA
stands for ‘group action’, GP for ‘group-persons
interaction’, GG for ‘group-group interaction’, and ‘IG’ for
‘inter-group interaction’. Types of quantifiers attached to
member variables of each activity are also listed. The
performance is compared with a system implemented
following the previous method. The previous method is
our implementation of group activity recognition system
following the previous paradigm. Previous systems
designed for the recognition of simple group activities
generally recognizes groups using spatial information first
and then analyzes their activities next [6,11]. In order to
show the advantage of our recognition algorithm over
previous systems, we have implemented another version of

our system called ‘previous method’ which uses identical
representation but follows previous recognition paradigm.

Table 1 shows true positive rates. False positive rates
were almost 0 in all cases with both systems, since
recognizing multiple sub-events satisfying the specific
relationship by ‘mistake’ is extremely unlikely. The
recognition accuracy depends on the inherent
characteristics of the group activity. We are able to observe
that our system performs superiorly over the previous
method. The previous method did not perform well
especially when recognizing ‘group stealing’, since spatial
distance among thieves was changing over time.

Activity\System Type Qntfs. Prev. Method Our System
Move GA ∀ 5/5 5/5
Carry GA ∀ 3/5 5/5

Carry by signal GP ∀ 3/5 4/5
Fight GG ∀∃ 3/5 4/5
Fight IG ∃∃ 4/5 4/5
Steal GG ∃∀∃ 2/5 4/5
Arrest GG ∀∃ 4/5 4/5
total 24/35 30/35

Table 1: Recognition accuracy of the system

5. Conclusions
We presented a novel representation and recognition

algorithm for the recognition of high-level group activities.
The technical contributions of this paper are the

representation scheme to represent various types of group
activities, and the new hierarchical algorithm for the
recognition. We presented recognition methodology for
group activities with complex temporal, spatial, and logical
structures, which has not been developed previously.

References
[1] J. F. Allen and G. Ferguson. Actions and Events in Interval

Temporal Logic. J. of Logic and Computation, 4(5), 1994.
[2] F. Cupillard, F. Brémond and M. Thonnat, Group Behavior

Recognition With Multiple Cameras, WACV 2002
[3] S. Gong, and T. Xiang. Recognition of group activities using

dynamic probabilistic networks. ICCV (2): 742-749, 2003.
[4] I. Haritaoglu, D. Harwood, and L. Davis. W4: Real-Time

Surveillance of People and Their Activities. IEEE T PAMI,
22(8):809-830, August 2000.

[5] S. Hongeng, R. Nevatia, and F. Bremond. Video-based event
recognition: activity representation and probabilistic
recognition methods. CVIU, 96(2):129–162, 2004.

[6] S. M. Khan, and M. Shah. Detecting group activities using
rigidity of formation. ACM Multimedia: 403-406, 2005.

[7] F. Lv, J. Kang, R. Nevatia, I. Cohen, and G. Medioni.
Automatic tracking and labeling of human activities in a
video sequence. PETS 2004.

[8] M. S. Ryoo and J. K. Aggarwal, Recognition of Composite
Human Activities through Context-Free Grammar based
Representation, CVPR 2006.

[9] P. Viola and M. J. Jones, Rapid Object Detection using a
Boosted Cascade of Simple Features, CVPR 2001.

[10] V.-T. Vu, F. Bremond, and M. Thonnat. Automatic video
interpretation: A novel algorithm for temporal scenario
recognition, IJCAI-03

[11] D. Zhang, D. Gatica-Perez, S. Bengio, and I. McCowan.
Modeling individual and group actions in meetings with
layered HMMs. IEEE T MM, 8(3):509-520, June 2006.

Figure 6: Example time interval detection results of ‘stealing’.

this = GroupStealing(G1, G2)

t3 =Distract(c, b)t1 =Approach(G1, G2)

t2 =TakeObject(a)

12 29 164 201 282

Figure 7: Processed video sequences of group activities. The top-most sequence and the middle sequence are example videos of ‘group
stealing’. The bottom-most sequence is an example video of ‘group arresting’. The top sequence and the bottom sequence are from real
CCTV videos that have been downloaded from YouTube, and the middle sequence is from the videos that we have taken in an office
environment. In case of ‘group stealing’, red bounding boxes are used to denote thieves, while green bounding box are used to denote
owners. A cyan bounding box is used to label the object, a laptop. In case of ‘arresting’, green boxes indicate policemen, and cyan
boxes indicate persons being arrested. (This figure is best viewed in color.)

frame6 frame47 Frame69 frame116 frame147frame26

frame12 frame164 frame179 frame201 frame227frame119

frame3 frame344 frame448 frame528 frame657frame240

