
 

 

 
Abstract 

 
This paper describes a general methodology for 

automated recognition of complex human activities. The 
methodology uses a context-free grammar (CFG) based 
representation scheme to represent composite actions and 
interactions. The CFG-based representation enables us to 
formally define complex human activities based on simple 
actions or movements. Human activities are classified into 
three categories: atomic action, composite action, and 
interaction. Our system is not only able to represent 
complex human activities formally, but also able to 
recognize represented actions and interactions with high 
accuracy. Image sequences are processed to extract poses 
and gestures. Based on gestures, the system detects actions 
and interactions occurring in a sequence of image frames. 
Our results show that the system is able to represent 
composite actions and interactions naturally. The system 
was tested to represent and recognize eight types of 
interactions: approach, depart, point, shake-hands, hug, 
punch, kick, and push. The experiments show that the 
system can recognize sequences of represented composite 
actions and interactions with a high recognition rate. 
 

1. Introduction 
High-level understanding of human activity is essential 

for various applications, including surveillance systems 
and human computer interactions. In particular, a human 
activity recognition system may enable the detection of 
abnormal activities as opposed to the normal activity of 
persons using public places like airports and subway 
stations. Automated human activity recognition may be 
useful for real-time monitoring of the elderly people, 
patients, or babies. Several researchers have worked on 
human activity recognition at various levels [1]. Some 
researches focus on simple tracking of persons, and others 
focus on estimating the physical state of persons in the 
scene. Further, various analyses on human actions have 
been conducted. Most of the previous researches focused 

mainly on the recognition of single (i.e. atomic) actions of 
humans, not on recognition of complex composition of 
multiple movements or actions [6, 7]. However, recently, 
understanding semantics of composite actions is getting 
more and more interest among researchers [3,4,5,9,10]. 

In this paper, we aim to recognize composite actions and 
interactions using a context-free grammar (CFG) based 
representation scheme. Our CFG representation scheme is 
able to construct a concrete representation for any 
composite action, and thus enables the system to recognize 
the defined composite actions based on their representation. 
Human actions and interactions are usually composed of 
multiple sub-actions, which themselves are atomic or 
composite actions. Thus, the representation for composite 
actions must convey the hierarchical and repetitive nature 
of the human activities. In addition, the recognition system 
must be able to recognize represented actions and 
interactions based on their sub-actions. 

Our focus in this paper is at the semantic level, the 
highest level, of the human activity recognition system. In 
order to recognize composite actions and interactions, raw 
pixel-level image sequences must be processed up to 
semantic descriptions of human activities. We adopt 
previously developed framework to extract features of 
body parts from pixel-level images [8]. We discuss how 
extracted features are applied to estimate poses and 
gestures of persons. Finally, we present the semantic level 
representation of general human actions and interactions, 
and the methodology to recognize represented actions and 
interactions. 

Our recognition framework is composed of several 
layers: the body-part extraction layer, the pose layer, the 
gesture layer, and the action and interaction layer. The 
body-part extraction layer, the lowest layer, estimates 
numerical status of all body parts for each image frame. 
Taking those numerical values as parameters, the pose 
layer extracts poses for each frame. The gesture layer then 
generates sequences of gestures from given sequences of 
poses. A pose is the abstraction of the state of one body part, 
and a gesture is the abstraction of meaningful sub-sequence 
of those poses. At the highest layer, the action and 
interactions layer, human activities are represented in terms 
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of time intervals and the relationships among them. The 
system detects human activities if there exists a time 
interval that satisfies all conditions specified in the 
representation. Various pixel-level techniques are used for 
the body-part extraction layer. Bayesian networks are used 
to implement the pose layer, and hidden Markov models 
(HMMs) are implemented for the gesture layer. At the 
highest layer, actions and interactions are represented 
semantically using the context-free grammar (CFG). 
Following the production rules of CFG, the system is not 
only able to represent composite actions and interactions 
naturally, but also able to recognize them. 

2. Related works 
Park and Aggarwal [6, 7] presented a hierarchical 

framework to recognize human actions and interactions 
from pixel level images. The framework abstracts image 
sequence into poses, gestures, actions, and interactions. 
Their system uses extracted body part knowledge to 
estimate poses for each frame, and then estimates one most 
dominant gesture based on sequence of poses. A gesture 
recognized through HMMs is directly converted into a 
single action, represented as the operation triplet. Two 
operation triplets of different persons are combined to form 
interactions, and two interactions might be combined to 
present the cause and effect of interactions. Similarly, 
Nguyen et al. [4] used hierarchical HMMs in order to 
recognize two levels of actions. 

Ivanov and Bobick [3] presented a hierarchical approach 
using a stochastic context-free grammar (SCFG) at the 
highest level. Their work divided recognition into 
two-levels. At the lower level, HMMs were used to 
recognize primitive trajectories. The primitive trajectories 
were treated as terminals for SCFG at the higher level. 
Their SCFG directly generates the sequence of terminals, 
i.e. primitives, with defined grammar. Language parsing 
techniques were used to detect events generated through 
SCFG. The main disadvantage of this approach was that the 
user must provide all possible production rules for all 
possible events, even for large domains. Shi et al. [10] tried 
to overcome the disadvantage of SCFG through using 
propagation networks as a representation of actions. 

In addition, there is research on event definition and 
inference in traditional AI fields. Allen and Ferguson [2] 
presented a definition of temporal intervals, and defined 
events using interval temporal logic. We adopt their 
concept on events, defining actions and interactions in 
terms of time intervals. Furthermore, we explicitly define 
temporal intervals hierarchically, extending the concept of 
Allen’s event representation. 

Nevatia et al. [5] constructed a representation language 
for general events, following modified Allen’s temporal 
logic. Their representation provided promising results on 
recognition of composite events. They not only provided 

representation scheme, but also illustrated initial results of 
recognition system using their representation. However, 
there are two major limitations in their representation 
language. First, their single-thread composite event 
corresponds only to a consecutive occurrence of multiple 
primitive actions. However, it is unlikely in case of single- 
person human activities, since multiple body parts involve 
single-person human activities. Secondly, their hierarchy 
of events is strictly fixed to three levels, and higher-level 
events can be only composed of lower-level events. This 
limits constructing high-level composite actions from 
smaller composite actions, and high-level interactions from 
smaller interactions. 

3. Body-part layer and pose layer 
The body-part layer contains pixel-level, blob-level, and 

object-level processing to extract meaningful information 
from a sequence of raw images. We use a hierarchical 
mechanism developed by Park and Aggarwal [8], in order 
to construct quantitative image features from one input 
frame. Their system parameterized the state of three body 
parts (head, upper-body, and lower-body) in terms of 
ellipses and convex hulls. Maintaining the overall structure 
of the system, we re-implemented the framework to make it 
more robust. In addition, our new program explicitly tracks 
the hand position, extracting additional important features. 

In the pose layer, a pose for each body part is estimated 
based on features extracted by the system’s body-part layer. 
A pose is the abstraction of the body part’s static state in 
one image frame. For each image frame, the pose that best 
describes instantaneous configuration of the body part is 
selected based on parameters from the body-part layer. We 
constructed one-dimensional states for a head pose, 
describing the torso direction. Upper-body and lower-body 

Figure 1: Figure of the Bayesian network and explanation of 
meaning of nodes. The Bayesian network estimates the state of 
hidden nodes (i.e. poses), based on observations. The Bayesian 
network reduces dimensions from twelve into five.



 

 

poses have two-dimensional structure, each corresponding 
to vertical and horizontal positions of a hand and a leg. For 
example, assume that a person is standing still, facing left 
with arm fully raised and stretched. Then, his/her head pose 
will be ‘left’, upper-body pose will be ‘<high, stretched>’, 
and lower-body pose will be ‘<low, withdrawn>’. 

Extending Park and Aggarwal’s work [6], Bayesian 
networks are implemented to estimate pose for each body 
part in each frame. The body-part parameters, estimated 
from the lower-layer, are converted into discrete values and 
are treated as observations produced by a specific pose. 
Bayesian networks estimate the pose for each frame, from 
the given observation and probabilities in the network. 
Figure 1 illustrates the structure of the Bayesian network, 
and possible states for pose of each body part, which is a 
final output of the pose layer. Note that new features, hand 
positions, are added. As a result of the pose layer, an input 
image sequence is converted into a sequence of poses. 

4. Gesture layer 
A gesture is an elementary movement of a body part. 

Taking the sequence of poses for each body part as an input, 
the gesture layer detects possible gestures occurring along 
the sequence. Essentially, gestures are sub-sequences of 
whole sequence of poses. The objective of the gesture layer 
is to recognize a set of all occurring gestures. Each 
occurring gesture has its starting time and ending time, 
which might overlap with other gestures. 

We construct hidden Markov models (HMMs) to detect 
the gestures occurring inside the sequence of frames. In 
order to recognize a sequence of gestures for each body 
part, we constructed one HMM per gesture. Types of 
gestures which our system is recognizing in this paper are 
similar to those in the paper presented by Park and 
Aggarwal [7]. These include elementary human gestures 
such as ‘arm stretching’, ‘arm withdrawing’, and so on. 
Each of these HMMs runs in parallel measuring the 
likelihood of the corresponding gesture based on input. The 
objective of the gesture layer is to detect which HMM 
created the sequence of poses and at what point. This is the 
traditional evaluation problem of the HMM. More 
specifically, the evaluation problem of the HMM is to 
determine the probability that a particular sequence of 
visible states, i.e. poses in our case, was generated by a 
corresponding model. 

Additionally, for each body part, the ‘noise HMM’ was 
constructed to cover input sequences that are not related to 
any gesture we defined. The ‘noise HMM’ tends to have 
the highest likelihood for meaningless sequences, making 
all gestures not to be detected for those sequences. 

We use the backward-looking forward algorithm to 
calculate the likelihood for each HMM. This works same as 
forward algorithm until detecting the ending point of the 
gesture. If likelihood of some HMM exceeds the 

probability threshold at frame t, we assume that the gesture 
corresponding to the HMM occurred, and the ending time 
of that gesture is t. Once the ending time of the gesture is 
detected, then the algorithm runs a backward algorithm to 
find the starting point of the gesture. After detecting the 
starting time and ending time of the gesture correctly, the 
algorithm proceeds to frame t+1. As a result of the gesture 
layer, a set of gestures labeled with starting and ending 
times is created for each body part. Input noises and 
miscalculation from lower layers are handled in this layer 
through HMM. 

5. Time intervals and predicates 
In this section, we discuss the overall structure of the 

general events, before constructing a specific 
representation for human actions and interactions. We 
adopt the concept of interval representation of time 
presented by Allen and Ferguson [2], in order to construct 
the representation for general events. We start from 
associating time intervals with the occurring events. Also, 
we define temporal, spatial, and logical predicates, which 
are used to describe relationships among time intervals. 

5.1. Structure of the time interval 
A time interval intuitively is the time associated with an 

occurring event. Time intervals we discuss throughout this 
paper are always associated with designated actions or 
interactions that we are interested in. In Allen’s interval 
temporal logic [2], a time interval is defined in the linear 
time line, with a fixed starting point and ending point. They 
attempted to represent an event by presenting necessary 
conditions for the event’s time interval. Our system follows 
their approach, but tries to represent hierarchical event 
explicitly. Since human activities are usually composed of 
multiple sub-events, the relationships among sub-events’ 
time intervals are the key for the represent of an event. 

In Figure 3, relationship among time intervals ‘i’, ‘j’, ‘k’, 
and ‘this’ are present to describe the event, ‘point’ 
interaction. Each time interval ‘i’, ‘j’, and ‘k’ corresponds 

Figure 2: Structure of ‘noise HMM’ and other HMMs. For each 
gesture to be recognized, one HMM will be constructed in order 
to recognize corresponding gestures. Additionally, for each body 
part, one noise HMM will be created. Probability aij corresponds 
to the transition probability from state wi to wj. Probability bjk
corresponds to the probability of observing k, when the real state 
of model is wj. 



 

 

to a smaller event. The variable ‘this’ is a special variable, 
always indicating the time interval of the defining action 
itself. (i) Time interval ‘this’, assigned for point interaction 
itself, must start with time interval ‘i’ and finish with time 
interval ‘j’, each assigned for arm stretching event and 
staying arm stretched event of person1. (ii) Time interval 
‘i’ and ‘j’ must happen consecutively, and ‘i’ must be 
before ‘j’. Furthermore, at the same time, (iii) person2 must 
stay stationary while all these events are occurring. 

We should note that time intervals of smaller events are 
used when representing the relationships. This enables the 
system to use already defined events to define new 
higher-level events, providing a concept of hierarchical 
event representation. We denote all events included in the 
relationships as ‘sub-events’ of defining event. That is, 
event Stretch(person1, arm), Stay_Stretched(person1, arm), 
and Stay_Stationary(person2) are sub-events of event 
‘point interaction’ in this example. 

The concrete definition for the time interval ‘this’ is the 
key for hierarchical event representation. Once the time 
interval ‘this’ for the corresponding event is correctly 
represented, the event can be used as a sub-event for other 
higher-level events. 

5.2. Predicates 
In the above example, all necessary conditions and 

relationships for the event are explained in English. We 
represent those relationships more formally, using three 
categories of predicates: temporal, spatial, and logical 
predicates. Temporal and spatial predicates are extremely 
important when describing human actions and interactions. 
Temporal predicates express the relationship among time 
intervals of sub-events. Spatial predicates, on the other 
hand, describe the relationship between persons involved in 
the interactions. Logical predicates, ‘and’, ‘or’, and ‘not’, 
concatenate multiple temporal and spatial predicates to 
construct overall representation for the event description. 
 
Temporal predicates. Temporal relationships are 
extremely important when describing human actions and 
interactions. Usually, actions and interactions of human 
consist of sequences of sub-events. Temporal predicates 
not only provide us a mechanism to define such sequential 
relations, but also help us to provide restricting conditions 

for the actions and interactions. We directly adopt the 
temporal relations among time intervals introduced in 
Allen’s interval temporal logic [2]. ‘before’, ‘meets’, 
‘overlaps’, ‘starts’, ‘during’, and ‘finishes’ are the 
predicates defined in Allen’s interval temporal logic. Each 
predicate takes two time intervals as a parameter for the 
predicates, and decides whether they are true or false. Let a 
and b be the time intervals, (astart, aend) and (bstart, bend). 

before(a, b)   <=> aend < bstart 
meets(a, b)  <=> aend = bstart 
overlaps(a, b)  <=> astart < bstart < aend 
starts(a, b)   <=> astart = bstart and aend < bend 
during(a, b)  <=> astart > bstart and aend < bend 
finishes(a, b)  <=> aend = bend and astart > bstart 

 
Spatial predicates. Spatial predicates define the spatial 
relationship between two agents or objects. Thus, they can 
be defined only in terms of interactions. If any interaction 
contains some spatial predicates, and t is the satisfying time 
interval of that event, those spatial predicates will always 
be true in the time interval t. 

We designed two spatial predicates: ‘near’ and ‘touch’. 
The ‘near’ predicate provides us information on whether 
two persons are closer than a given relative distance value 
or not. The distance between two persons is divided by the 
mean of their heights, producing the relative distance. The 
‘touch’ predicate is true if and only if the boundary ratio 
that two persons share is greater than the threshold 
parameter. 

near(person i, person j, threshold) <=> 
(Relative distance between i and j) < threshold 

touch(person i, person j, threshold) <=> 
(Overlapping boundary ratio of i and j) > threshold 
 

Logical predicates. Logical predicates includes ‘and’, ‘or’, 
and ‘not’ predicate. These are elementary logical predicates. 
All these predicates can take any relationships as a 
parameter. The ‘and’, ‘or’, and ‘not’ predicates are defined 
in an obvious manner. That is, logical predicates can 
concatenate temporal and spatial predicates to express 
relationships. The predicate ‘and’ holds if and only if 
relations described in all two parameters are satisfied. The 
predicate ‘or’ holds if more than one of two parameters is 
satisfied. We say that the ‘not’ of a relationship is satisfied 
if and only if the relationship parameter is false. 

6. Atomic actions 
Atomic actions are the most elementary component of 

human activities, which may not be divided into smaller 
meaningful movements. Atomic components of human 
actions and interactions are the gestures, recognized 
through lower-level systems. Therefore, we can construct 
one atomic action from one gesture. However, gestures 
solely are insufficient to represent the actions. In order to 

this==Point_interactions(person1,person2) 

i=Stretch(person1,arm) j=Stay_Stretched(person1,arm)

k =Stay_Stationary(person2)  

Figure 3: Example of necessary relationship among time intervals 
for interaction ‘point’. 



 

 

represent actions, the system needs to explicitly specify the 
subject and object of the actions. Following the linguistic 
theory of ‘verb argument structure’, we represent atomic 
actions as <agent-motion-target>, following Park’s 
operation triplet [7]. Putting subject and object information 
together with the gesture, we construct the operation triplet. 

For example, ‘person 1 stretched his hand to the person 
2’s head’ is an atomic action, because only one gesture is 
involved in the action. Gesture ‘Stretch’ is the motion of 
this atomic action. In the operation triplet, ‘person 1’s 
hand’ is the agent and ‘person 2’s head’ is the target. 

Atomic actions follow the structure of events defined in 
section 5. When the atomic action is recognized, its 
corresponding time interval will be equivalent to that of 
gesture specified in the operation triplet. Since other events 
cannot affect atomic actions by definition, no other 
temporal-spatial relationships exist for atomic actions. As a 
result, the operation triplets are the necessary and sufficient 
representation of atomic actions. 

7. Composite actions 
If an action contains two or more atomic actions, it is 

classified as a composite action. Sub-events of composite 
actions can be atomic actions, or even other composite 
actions. The only constraint when constructing composite 
actions is that only the actions of the same person can 
become the sub-events. Otherwise, it becomes an 
interaction, rather than a composite action. 

Composite actions follow the structure defined for 
general events in section 5. The Figure 4 illustrates the time 
intervals and their relationships for a composite action, 
‘shake-hands action’. The ‘shake-hands action’ represents 
an action that a person is performing in the hand shake 
interaction. That is, the person stretches one’s arm, stays 
stretched for some period, and then withdraws it. There are 
three sub-events participating in ‘shake-hands action’: 
‘Stretch’, ‘Stay_Stretched’, and ‘Withdraw’. Each 
sub-event has associated variable: ‘x’, ‘y’, and ‘z’. 

7.1. Representation 
The representation for composite actions must consist of 

two parts: a list of variables corresponding to time intervals 
associated with designated sub-events, and the 
relationships among those variables. The first component 
can be represented by associating one symbol name with 
one sub-event. The second component, which represents 
necessary conditions for composite actions, is defined 
through predicates mentioned in section 5. Variables 
defined and the special variable ‘this’, representing 
defining action itself, are used in order to specify the 
relationships. Therefore, we are able to represent a 
composite action in terms of the relationship between ‘this’ 
and other time interval variables ‘t1’, ‘t2’, ..., which are 

satisfying time intervals of sub-events. 
As a format of the representation scheme, we use a 

context-free grammar (CFG). CFG naturally leads the 
representation to use concepts recursively, enabling the 
action to be defined based on sub-events. In our 
representation, atomic actions serve as terminals. On the 
other hand, composite actions are treated as non-terminals. 
These non-terminals can be converted to terminals 
recursively, using production rules. 

Our CFG does not generate sequences of poses or 
gestures directly. Rather, we construct a representation of 
composite actions using the CFG. A representation built 
through the CFG describes all participating sub-events, and 
their relationships. Sub-events can either be atomic actions 
or other already represented composite actions. Even 
though the CFG does not create the sequences of poses or 
gestures directly, we will be able to recognize composite 
actions through detecting sequences that satisfy the 
representation constructed with our CFG. With our CFG, 
we are able to represent any actions if their relationship can 
be described in terms of the predicates we have defined. 

Therefore, the general representation of composite 
actions can be described using the following 
context-free-grammar. Non-terminal Action(i) indicates 
action of person i. Action(i) can be either an atomic action, 
or a composite action defined with two components: 
ActionDefs(i,var) and ActionRelationship(var). The first 
component, ActionDefs(i,var), defines the variables for 
corresponding time intervals of sub-events. Parameter var 
is defined to be the list of variables associated with 
sub-events. ActionDefs(i,var) is the list of several 
def(c,Action(i)), and this defines the contents of list var. 
Statement def(c,Action(i)) associates some variable c with 
the time interval of a denoted sub-event. As a result, list var 
contains a list of variables associated with time intervals of 
corresponding composing events. 

The second component is ActionRelationship(var). With 
temporal and logical predicates, ActionRelationship(var) 
defines the all necessary conditions for the action using all 
variables in var and special variable ‘this’. A combination 
of any temporal predicates presented in section 5.2 can be 
used to define ActionRelationship(var). The time interval 
‘this’ satisfying all necessary conditions will be the 
corresponding time interval for the action. 

this=ShakeHands_action(person1) 

x=Stretch(p1, arm) z=Withdraw(p1, arm) 

y=Stay_Stretched(p1, arm)  

Figure 4: Example illustrating the atomic actions’ time intervals 
and their relationships needed for the composite action, 
‘shake-hands action’.



 

 

Action(i)  
->(ActionDefs(i,var), ActionRelationship(var) ) 

   -> atomic_action(operation triplet) 
ActionDefs(i, var) 

-> list( def(c, Action(i)), ActionDefs(i, var-c) ) 
   -> def(c, Action(i)) 
ActionRelationship(var) 

-> Logical-Predicate( ActionRelationship(var), 
ActionRelationship(var) ) 

   -> Temporal-Predicate( ‘this’, var(a) ) 
   -> Temporal-Predicate( var(a), var(b) ) 
 

For example, let’s look into the composite action ‘shake- 
hands action’ again. As we informally defined previously 
in Figure 4, we associate variable ‘x’, ‘y’, and ‘z’ with 
sub-events ‘Stretch’, ‘Stay_Stretched’, and ‘Withdraw’. 
Then, relationships are represented in terms of predicates: 
meets(x, y), meets(y, z), starts(x, this), and finishes(z, this). 
Therefore, formal representation of ‘shake-hands action’ is 
defined through our CFG scheme as follows. 

 
Stretch_hand(i) = 

atomic_action(<person i’s hand, stretch, other person>) 
Stay_Stretched_hand(i) = atomic_action 

(<person i’s hand, stay stretched, other person’s hand>) 
Withdraw_hand(i) = 

atomic_action(<person i’s hand, withdraw, null>) 
SHActionDefs(i, var) = list( 

 def(‘x’, Stretch_hand(i)), 
  list( 
   def(‘y’, Stay_Stretched_hand(i)), 
   def(‘z’, Withdraw_hand(i)) ) 
 ) 

SHActionRelationship(var) = 
and( meets(‘x’, ‘y’), 

  and( 
   meets(‘y’, ‘z’), 
   and(starts(‘x’, ‘this’), finishes(‘z’, ‘this’)) 
  ) 
 ) 

ShakeHands_action(i) = 
(SHActionDefs(i, var), SHActionRelationship(var) ) 

8. Interactions 
Interactions are composed of the actions and/or 

interactions of two persons. In the case of actions, actions 
were classified into atomic actions and composite actions. 
However, all interactions have composite characteristics. 
Therefore, except for the fact that sub-events of 
interactions can be actions of both persons, the CFG 
production rule, i.e. representation scheme, of interactions 
is almost identical to that of composite actions. Further, 
spatial predicates also can be used to describe relationships 
for interactions.  

Interaction(i, j) -> 
(InteractionDefs(i, j, var), InteractionRelationship(i, j, var)) 
InteractionDefs(i, j, var) 

-> list( def(c, Interaction(i, j)), 
InteractionDefs(i, j, var-c) ) 

-> list( def(c, Action(i or j)), InteractionDefs(i, j, var-c) ) 
-> def(c, Action(i or j)) 
-> null 

InteractionRelationship(i, j, var) 
-> Logical-Predicate(  InteractionRelationship(i, j, var), 
         InteractionRelationship(i, j, var)) 
-> Temporal-Predicate( ‘this’, var(a) ) 
-> Temporal-Predicate( var(a), var(b) ) 
-> Spatial-Predicate(person i, person j, threshold) 

 
The following example shows how a ‘hand-shake’ 

interaction can be represented by following our CFG 
scheme. Already defined composite actions, ‘shake-hands 
action’ of two persons, are used as sub-events of the 
interaction ‘shake-hands interaction’. If person i and j do 
the action ‘shake-hands action’ concurrently, and their 
hands touch, we regard it as a hand shake interaction.  

 
Touching_interaction(i, j) = ( null, touch(i, j, 0) ) 
ShakeHandsDef(i, j, var) =  list( 

def(‘x’, ShakeHands_action(i)), 
list(  def(‘y’, ShakeHands_action(j)), 

def(‘z’, Touching_interaction(i, j)) 
) 

) 
ShakeHandsRelationship(i, j, var) = 

 and( 
and( during(‘z’, ‘x’), during(‘z’, ‘y’) ), 

  and( 
   starts(‘x’, ‘this’), 
   finishes(‘x’, ‘this’) ) 

) 
ShakeHands_interactions(i, j) = 

(ShakeHandsDef(i,j,var), ShakeHandsRelationship(i,j)) 

9. Recognition 
Detecting time intervals in which an action or interaction 

occurred is significant part of the recognition. If an action’s 
time interval satisfies all temporal relationships specified in 
the representation, and participating persons satisfies all 
spatial relationships in that time interval, then we conclude 
that the action or interaction is recognized. Time intervals 
for atomic action can be directly detected through finding 
time intervals of the gesture specified in operation triplet. 
For composite actions, an occurring time interval can be 
detected through finding time intervals that satisfy all 
temporal relationships needed for variable ‘this’. In case of 
interactions, spatial relationships between two persons also 
need to be satisfied in the time interval. 



 

 

9.1. Atomic actions 
An atomic action is represented in terms of operation 

triplet. By definition, an occurring time interval of an 
atomic action is that of a gesture specified through the 
motion term in operation triplet <agent, motion, target>. If 
the gesture layer recognized a gesture specified in motion 
term of the triplet, and its subject and object corresponds to 
the agent and target term of operation triplet, the system 
concludes that the atomic action is recognized in that time 
interval. 

9.2. Composite actions and interactions 
Representation of composite actions and interactions has 

two components: variable definition and their relationships. 
In order to recognize a composite action or an interaction, 
the system first detects all possible time intervals for each 
variable in a variable list. Since each action or each 
interaction can occur multiple times, each variable can 
correspond to multiple time intervals. Finding time 
intervals for each variable is equivalent to recognizing the 
corresponding action or interaction for that variable. 

Once the time intervals for variables in a variable list are 
found, the system needs to check whether any combination 
of the time intervals satisfies all relationships. If there are n 
variables and m1, m2, …, mn number of time intervals for 
each variables, then there exist Πi=0 to n mi possible 
combinations of (variable, time interval) pairs. This is a 
traditional constraint satisfaction problem. The system 
must find a specific combination of (variable, time interval) 
pairs that satisfies relationships, among all possible 
combinations. 

Since our representation for actions and interactions has 
a hierarchical structure, i.e. one action or interaction has 
multiple sub-events, our action and interaction recognition 
is done in hierarchical way. If a composite action or an 
interaction A has action B and C in its variable list, i.e. B 
and C are sub-events of A, then the recognition system first 
recognize action B and C. If B and C are composites 
themselves, they again trigger recognition of their 
sub-events in the variable list. At some point, all the 
sub-events will be atomic actions, which the system 
recognizes using the algorithm described in 9.1. This is 
similar to tree traversal where actions and interactions are 
nodes, variable lists specify edges, and atomic actions are 
leaves. In order to recognize the root action or interaction, 
the system must recognize its child. This process continues 
until the system reaches the leaves. Once the system 
reaches leaves, the system is able to compute time intervals 
of composite actions or interactions that have atomic 
actions as sub-events. The system traverses back to the root, 
recognizing all internal nodes from leaves to the root. 

The constraint satisfaction problem is a NP-hard 
problem, which requires O(Πi=0 to n mi * t2) time complexity 

in our case, where t is the total number of frames. Focusing 
on linear characteristics of actions and interactions, and 
forcing additional constraints on relationships and time 
intervals, the time complexity can be reduced to O(t * r), 
where r is the number of relationships per action. 
 

10. Experimental results 
We recognized the following eight two-person 

interactions through our system: approach, depart, point, 
shake-hands, hug, punch, kick, and push. Interaction 
videos taken by Sony Handy Cam were converted into 
sequences of image frames with 320*240 pixel resolution, 
obtained at a rate of 15 frames per sec. Six pairs of persons 
participated in the experiment and 24 sequences were 
obtained. In each sequence, participants were asked to 

Figure 6: Outputs of the pose layer, the gesture layer, and the 
actions and interaction layer. Time intervals of atomic actions 
and interactions are presented. 

Figure 5: Fig (a) shows sequences of raw images of consecutive 
three interactions: shake hands, point, and hug. Fig (b) illustrates 
processed sequence of images by body-part layer. 



 

 

perform a number of above interactions consecutively and 
continuously. Overall, each interaction was performed 12 
times total throughout all sequences. 

The representations for the eight interactions were 
constructed manually using our CFG-based representation 
scheme. Usually, a composite action is first defined in order 
to represent meaningful one-person movement in the 
interaction. For example, in the previous sections, the 
composite action ‘shake-hands action’ was defined first in 
order to represent interaction ‘shake-hands interaction’. 
The composite action ‘shake-hands action’ and the 
interaction ‘touching’ were sub-events. 

Figure 5 and 6 show the intermediate outputs of each 
layer. In this experiment, two persons performed three 
interactions consecutively: shake-hands, point, and hug. 
The body-part layer extracts features for each body parts 
per frame. Figure 5 shows the sequences of raw images, 
and processed images for extracting body-part parameters. 
Once the features for each frame are extracted, the pose 
layer converts them into discrete pose for each body part. 
The gesture layer converts sequences of poses into 
sequences of gestures. The recognition algorithm provided 
in section 9 is then used to recognize interactions based on 
information from the gesture layer. Figure 6 shows the 
result of the pose layer, the gesture layer, and the final 
result of interaction recognitions. 

Table 1 shows the performance of our recognition 
system. Because of the accurate representation on 
composite actions, the system is superior to all previous 
systems. Moreover, the results are obtained from sequences 
of consecutive interactions, not segmented manually. The 
system was able to recognize sequences of actions and 
interactions with high degree of accuracy.  

11. Conclusion and future works 
We presented the general methodology for automated 

recognition of complex human actions and interactions. 
The fundamental idea is to use the CFG-based 
representation scheme to represent composite actions and 
interactions. The CFG-based representation scheme 
provides a formal method to define occurring time intervals 
of composite actions and interactions. The idea of 
representing complex actions and interactions as a 
composition of simpler actions and interactions was the key. 
Our experiments show that the system can represent and 
recognize composite actions and interactions with high 
recognition rate. 

The novelty of our work is on the framework to represent 
and recognize high-level hierarchical actions from raw 
image sequence. Our representation explicitly captures the 
hierarchical nature of actions and interactions. Our system 
has the ability to use represented actions as sub-events of 
higher-level actions, thereby minimizing the redundancy. 

The potential of our work is that our system is able to 

recognize even higher-level composite actions and 
interactions. Our system can recognize any actions and 
interactions if their time intervals can be defined properly 
through our CFG-based representation scheme. Our 
framework is also able to handle noisy inputs through 
HMMs. However, current framework cannot process large 
scale errors, such as insertion or deletion of sub-events. In 
the future, we plan to take probabilistic nature of actions 
into consideration. Also, we aim to develop methodology 
for our system to learn activity representations based on 
large training sets. 
 

interaction total correct accuracy 
approach 12 12 1.000 
depart 12 12 1.000 
point 12 11 0.917 
shake hands 12 11 0.917 
hug 12 10 0.833 
punch 12 11 0.917 
kick 12 10 0.833 
push 12 11 0.917 
total 96 88 0.917 

Table 1: Recognition accuracy of the system 
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