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Motivation 
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How do we interpret a sequence of actions? 



Hierarchy 

4 

Hierarchy implies decomposition into sub-parts 



Now we’ll cover… 
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Syntactic 
Approaches 



Syntactic Models 
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Activities as strings of symbols. 

What is the underlying structure? 



Early applications to Vision 
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Tsai and Fu 1980.  
Attributed Grammar-A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition.  



Hierarchical syntactic approach 

  Useful for activities with: 
 Deep hierarchical structure 
 Repetitive (cyclic) structure 

  Not for 
  Systems with a lot of errors and uncertainty 
  Activities with shallow structure 
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Basics 
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Generic Language Natural Languages 

Start Symbol (S) Sentences 

Set of Terminal Symbols (T) Words 

Set of Non-Terminal Symbols (N) Parts of Speech 

Set of Production Rules (P) Syntax Rules 

Context-Free Grammar 



Parsing with a grammar 
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ants like flies swat 

S → NP VP   (0.8)   PP → PREP NP  (1.0) 
S → VP   (0.2)   PREP → like  (1.0) 
NP → NOUN  (0.4)   VERB → swat  (0.2) 
NP → NOUN PP  (0.4)   VERB → flies  (0.4) 
NP → NOUN NP  (0.2)   VERB → like  (0.4) 
VP → VERB  (0.3)   NOUN → swat  (0.05) 
VP → VERB NP  (0.3)   NOUN → flies  (0.45) 
VP → VERB PP  (0.2)   NOUN → ants  (0.5) 
VP → VERB NP PP  (0.2) 



Parsing with a grammar 
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ants like flies swat 

S → NP VP   (0.8)   PP → PREP NP  (1.0) 
S → VP   (0.2)   PREP → like  (1.0) 
NP → NOUN  (0.4)   VERB → swat  (0.2) 
NP → NOUN PP  (0.4)   VERB → flies  (0.4) 
NP → NOUN NP  (0.2)   VERB → like  (0.4) 
VP → VERB  (0.3)   NOUN → swat  (0.05) 
VP → VERB NP  (0.3)   NOUN → flies  (0.45) 
VP → VERB PP  (0.2)   NOUN → ants  (0.5) 
VP → VERB NP PP  (0.2) 



Video analysis with CFGs 
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The “Inverse Hollywood problem”:  
From video to scripts and storyboards via causal analysis.  
Brand 1997 

Action Recognition using Probabilistic Parsing.  
Bobick and Ivanov 1998 

Recognizing Multitasked Activities from Video using  
Stochastic Context-Free Grammar.  
Moore and Essa 2001 



CFG for human activities 
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enter detach leave enter detach attach touch touch detach attach leave 

M. Brand. The "Inverse Hollywood Problem":  
From video to scripts and storyboards  

via causal analysis. AAAI 1997. 



Parse tree 
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enter detach 

ADD 

IN ACTION (Open PC) 

leave 

OUT 

enter detach 

IN 

ADD 

attach touch touch detach 

ACTION (unscrew) 

MOVE 

MOTION MOTION 

attach leave 

OUT 

REMOVE 

SCENE (Open up a PC) 

M. Brand. The "Inverse Hollywood Problem": From video to scripts and storyboards via causal analysis. AAAI 1997. 

•  Deterministic low-level primitive detection 
•  Deterministic parsing 



Stochastic CFGs 
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Action Recognition using Probabilistic Parsing.  
Bobick and Ivanov 1998 



Gesture analysis with CFGs 

17 Action Recognition using Probabilistic Parsing. Bobick and Ivanov 1998 

Primitive recognition with HMMs 
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left-right 

Action Recognition using Probabilistic Parsing. Bobick and Ivanov 1998 
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up-down 

Action Recognition using Probabilistic Parsing. Bobick and Ivanov 1998 
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right-left 

Action Recognition using Probabilistic Parsing. Bobick and Ivanov 1998 
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down-up 

Action Recognition using Probabilistic Parsing. Bobick and Ivanov 1998 



Parse Tree 
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left-right up-down right-left down-up 

LR 

UD 

RL 

DU TOP BOT 

RH 

S 



Errors 

23 Action Recognition using Probabilistic Parsing. Bobick and Ivanov 1998 

HMM a 

HMM b 

Likelihood value over time (not discrete symbols) 

Errors are inevitable… 

but the grammar acts as a top-down constraint 



Dealing with uncertainty & errors 

  Stolcke-Early (probabilistic) parser 
  SKIP rules to deal with insertion errors 
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HMM a 

HMM b 

HMM c 

Action Recognition using Probabilistic Parsing. Bobick and Ivanov 1998 



SCFG for Blackjack 
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Recognizing Multitasked Activities from Video using  
Stochastic Context-Free Grammar.  

Moore and Essa 2001 

•  Deals with more complex activities 
•  Deals with more error types 



extracting primitive actions 
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Game grammar 
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Recognizing Multitasked Activities from Video using Stochastic Context-Free Grammar. Moore and Essa 2001 



Dealing with errors 

  Ungrammatical strings cause parser to fail 

  Account for errors with multiple hypothesis 
  Insertion, deletion, substitution 

  Issues 
  How many errors should we tolerate? 
  Potentially exponential hypothesis space 
  Ungrammatical strings: vision problem or illegal 

activity? 
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Observations 
  CFGs good for structured activities 
  Can incorporate uncertainty in observations 
  Natural contextual prior for recognizing errors 

  Not clear how to deal with errors 
  Assumes ‘good’ action classifiers 
  Need to define grammar manually 

Can we learn the grammar from data? 
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Heuristic Grammatical Induction 
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1.  Lexicon learning 
•  Learn HMMs 
•  Cluster HMMs 

2.  Convert video to string 

3.  Learn Grammar 

Unsupervised Analysis of Human Gestures. Wang et al 2001 



COMPRESSIVE 
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a b c d a b c d b c d a b a b


substring 
deletion of  
substring 

insertion of  
new rule 

On-Line and Off-Line Heuristics for Inferring Hierarchies of Repetitions in Sequences. 
 Nevill-Manning 2000. 

length occurrence new rule new symbol 



example 
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S→a b c d a b c d b c d a b a b


S→a    A    a    A       A    a b a b

A→b c d


(DL=16) 

(DL=14) 

Repeat until compression becomes 0. 



Critical assumption 

  No uncertainty 
  No errors 

  insertions 
  deletions 
  substitution 

Can we learn grammars despite errors? 
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Learning with noise 
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Recovering the basic structure of human activities from  
noisy video-based symbol strings. Kitani et al 2008. 

Can we learn the basic structure of a transaction? 



extracting primitives 
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Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 



Underlying structure? 
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D → a  x  b  y  c  a  b  x  c  y  a  b  c  x


Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 



Underlying structure? 
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D → a  x  b  y  c  a  b  x  c  y  a  b  c  x


D → a      b     c  a  b      c      a  b  c 


Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 



Underlying structure? 
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D → a  x  b  y  c  a  b  x  c  y  a  b  c  x


D → a      b     c  a  b      c      a  b  c 


Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 



Underlying structure? 
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D → a  x  b  y  c  a  b  x  c  y  a  b  c  x


D → a      b     c  a  b      c      a  b  c 


A → a  b  c     D → A  A  A

Simple grammar Efficient compression 

Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 



Information Theory Problem (MDL) 
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Model complexity Data compression 

Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 

Ĝ = argmin
G

{DL(G) +DL(D|G)}



Information Theory Problem (MDL) 
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DL(G) = − log p(G)

= − log p(θS , GS)

= − log p(θS |GS)− log p(GS)

= DL(θS |GS)−DL(GS)

Model complexity Data compression 

Grammar parameters Grammar structure 

Model complexity 

Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 

Ĝ = argmin
G

{DL(G) +DL(D|G)}



Information Theory Problem (MDL) 
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DL(G) = − log p(G)

= − log p(θS , GS)

= − log p(θS |GS)− log p(GS)

= DL(θS |GS)−DL(GS)

DL(D|G) = − log p(D|G)

Model complexity Data compression 

Grammar parameters Grammar structure 

Likelihood  
(inside probabilities) 

Model complexity 

Data compression 

Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 

Ĝ = argmin
G

{DL(G) +DL(D|G)}



Minimum Description Length 
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Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 



Minimum Description Length 
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Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 
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Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 
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Recovering the basic structure of human activities from noisy video-based symbol strings. Kitani et al 2008. 



Conclusions 

  Possible to learn basic structure 
  Robust to errors  

(insertion, deletion, substitution) 

  Need a lot of training data 
  Computational complexity 
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Bayesian Approaches 
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Infinite Hierarchical Hidden Markov Models.  
Heller et al 2009. 

The Infinite PCFG using Hierarchical Dirichlet Processes.  
Liang et al 2007. 



Take home message 
Hierarchical Syntactic Models 

  Useful for activities with: 
 Deep hierarchical structure 
 Repetitive (cyclic) structure 

  Not for 
  Systems with a lot of errors and uncertainty 
  Activities with weak structure 
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50 

Statistical 
Approaches 



Using a hierarchical statistical approach 
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  Use when 
  Low-level action detectors are noisy 
  Structure of activity is sequential 
  Integrating dynamics 

  Not for 
  Activities with deep hierarchical structure 
  Activities with complex temporal structure 



Statistical (State-based) Model 
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Activities as a stochastic path. 

What are the underlying dynamics? 



Characteristics 

  Strong Markov assumption 
  Strong dynamics prior 
  Robust to uncertainty 

  Modifications to account for 
 Hierarchical structure 
 Concurrent structure 
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Hierarchical activities 
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Problem: 
How do we model  

hierarchical activities? 

Solution:  
“stack” actions for  

hierarchical activities 

combinatory state space! 



Hierarchical hidden Markov model 
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Learning and Detecting Activities from Movement Trajectories Using the  
Hierarchical Hidden Markov Models. Nguyen et al 2005 



Context-free activity grammar 
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Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Models. Nguyen et al 2005 



Context-free activity grammar 
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Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Models. Nguyen et al 2005 



Observations 

  Tree structures useful for hierarchies 
  Tight integration of trajectories with  

abstract semantic states 

  Activities are not always a single  
sequence  
(ie. they sometimes happen in parallel ) 
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Concurrent activities 
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Problem: 
How do we model  

concurrent activities? 

Solution:  
“stand-up” model for  
concurrent activities 

combinatory state space! 



Propagation network 
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Propagation Networks for Recognition of Partially Ordered Sequential Action. Shi et al 2004 
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Propagation Networks for Recognition of Partially Ordered Sequential Action. Shi et al 2004 



temporal inference 
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Inference by standing the state transition model on its side 



Inferring structure (storylines) 
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Understanding Videos, Constructing Plots –  
Learning a Visually Grounded Storyline Model from Annotated Videos 

Gupta, Srinivasan, Shi and Davis CVPR 2009 

Learn AND-OR graphs from weakly labeled data 



Scripts from structure 
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Understanding Videos, Constructing Plots - Learning a Visually Grounded Storyline Model from Annotated Videos. 
Gupta, Srinivasan, Shi and Davis CVPR 2009 



Take home message 
Hierarchical statistical model 

  Use when 
  Low-level action detectors are noisy 
  Structure of activity is sequential 
  Integrating dynamics 

  Not for 
  Activities with deep hierarchical structure 
  Activities with complex temporal structure 
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Contrasting hierarchical approaches 
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Actions as: Activities as: Model Characteristic 

Statistic probabilistic  
states paths DBN Robust to  

uncertainty 

Syntactic discrete  
symbols strings CFG Describes  

deep hierarchy 

Descriptive logical  
relationships sets CFG, MLN 

Encodes 
complex  

logic 
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