## Frontiers of Human Activity Analysis

J. K. Aggarwal Michael S. Ryoo Kris M. Kitani







# Single layered approaches

## Two different views

- Activities as human movements
  - Semantic-oriented
  - 3-D body-part estimation
  - Tracking



Sequence

- Activities as video observations
  - Data-oriented
  - Spatio-temporal features
  - Bag-of-words



Space-time distribution

## Single layered approaches

**Sequential approaches** 

## Sequential approaches

- Actions as a set of videos
  - Videos as feature sequences

|                                   | Space-time approaches                                   |                                                                                  |                                                                                                            | Sequential approaches                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |  |  |  |
|-----------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                   | Trajectories                                            | Space-time volume                                                                | Space-time features                                                                                        | Data-based                                                                                                                                                                                                                       | State model-based                                                                                                                                                                                                                                                                                     |  |  |  |
| Template matching                 | [Campbell and Bobick '95]<br>[Rao and Shah '01]         | [Bobick and J. Davis '01]<br>[Shechtman and Irani '05]<br>[Rodriguez et al. '08] | [Zelnik-Manor '01]<br>[Laptev and Lindeberg '03]<br>[Dollar et al. '05]                                    | [Darrell and Pentland '93]<br>[Gavrila and L. Davis '95]<br>[Yacoob and Black '98]<br>Ali and Aggarwal '01]<br>[Veeraraghavan et al. '06]<br>[Lublinerman et al. '06]<br>[Jiang et al. '06]<br>[Vaswani et al. '03] <sup>G</sup> | [Yamato et al. '92]<br>[Starner and Pentland '95]<br>[Bregler '97]<br>[Bobick and Wilson '97]<br>[Oliver et al. '00]<br>[Park and Aggarwal, '04]<br>[Natarajan and Nevatia '07]<br>[Moore et al. '99] <sup>0</sup><br>[Gupta and Davis '07] <sup>0</sup><br>[Filipovych and Ribeiro '08] <sup>9</sup> |  |  |  |
| Neighbor-based<br>(including SVM) | [Sato and Aggarwa1'04]                                  | [Efros et al. '03]<br>[Yilmaz and Shah '05]<br>[Ke et al.' 07]                   | [Shuldt et al. '04]<br>[Blank et al. '05]<br>[Scovanner et al. '07]<br>[Laptev et al. '08]                 |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |  |  |  |
| Statistical<br>matching           | [Sheikh et al. '05]<br>[Khan and Shah '05] <sup>G</sup> |                                                                                  | [Chomat and Crowley '99]<br>[Niebles et al. '06, '08]<br>[Wong et al. '07]<br>[Lv et al. '04] <sup>G</sup> |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                       |  |  |  |

Single-layered approaches

## Sequential approaches

#### Motivation

- An action is a sequence of body-part states
- Each frame in an action video describes a particular body-part configuration
  - Example: 11 points body configuration of 'kicking'



## Action recognition using HMMs

- Recognition using hidden Markov models
  - Each HMM generates a particular sequence of features.
  - Matching observed features with the model.
    - An action -> a set of sequences of features

#### [Yamato et al. CVPR 1992]: Tennis plays





f=(aco,acı,...,aij,...амı)

Symbol sequence 60 61 61 62 62 62 63 63 64 64 65 66 66 66 67 68 68 69 69 70 70 70 71 71

## HMMs for actions

- Human action as a pose sequence
- Each hidden state is trained to generate a particular body posture.
  - Each HMM produces a pose sequence: action



## Hidden Markov models

This is a classic evaluation problem of HMMs.

- Given observations V<sup>T</sup> (a sequence of poses), find the HMM M<sub>i</sub> that maximizes P(V<sup>T</sup>|M<sub>i</sub>): forward algorithm.
- Transition probabilities a<sub>ij</sub> and observations probabilities b<sub>ik</sub> are pre-trained using training data.



## HMMs for hand gestures

- HMMs for gesture recognition
  - American Sign Language (ASL)
  - Sequential HMMs
    - Features from colored globes



[Starner, T. and Pentland, A., Real-time American Sign Language recognition from video using hidden Markov models. International Symposium on Computer Vision, 1995.]

## Dynamic time warping

- Dynamic programming algorithm to match two strings (e.g. sequences).
  - Gavrila and L. Davis, 1995]
  - Each frame generates a symbol (of a feature vector)



## **Coupled HMMs**

#### Pentland CHMMs

- Human-human interactions
  - Two types of states for two agents
- Synthetic agents for training HMMs



[Oliver, N. M., Rosario, B., and Pentland, A. P., A Bayesian computer vision system for modeling human interactions. IEEE T PAMI, 2000.]

## **HMM Variations**

- Coupled hidden semi-Markov models
  - Natarajan and Nevatia 2007
  - Human-human interactions
  - Activities with varying durations
    - Models probabilistic distributions of state durations.









[Natarajan, P. and Nevatia, R., Coupled hidden semi Markov models for activity recognition. WMVC 2007]

## **Dynamic Bayesian networks**

- Diverse variations
  - Dynamic Bayesian networks
    - Body-part analysis





[Park, S. and Aggarwal, J. K., A hierarchical Bayesian network for event recognition of human actions and interactions. Multimedia Systems, 2004]

## Hierarchical human-body modeling



Vertical projection

A simple human body model

Data structure

## **Space-time trajectories**

- Trajectory patterns
  - Yilmaz and Shah, 2005 UCF
  - Joint trajectories in 3-D XYT space.
  - Compared trajectory shapes to classify human actions.





(c)

### Sequential approaches - summary

Designed for modeling sequential dynamics

- Markov process
- Motion features are extracted <u>per frame</u>
- Limitations
  - Feature extraction
    - Assumes good observation models
  - Complex human activities?
    - Large amount of training data



## Single layered approaches Space-time approaches

## Space-time approaches

Single-layered approaches

Actions as a set of videos

Videos as space-time volumes

|                                 |                                                         | Space-time approaches                                                            | Sequential approaches                                                                                      |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |  |  |  |  |
|---------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                 | Trajectories                                            | Space-time volume                                                                | Space-time features                                                                                        | Data-based                                                                                                                                                                                                                       | State model-based                                                                                                                                                                                                                                                                        |  |  |  |  |
| Template<br>matching            | [Campbell and Bobick '95]<br>[Rao and Shah '01]         | [Bobick and J. Davis '01]<br>[Shechtman and Irani '05]<br>[Rodriguez et al. '08] | [Zelnik-Manor '01]<br>[Laptev and Lindeberg '03]<br>[Dollar et al. '05]                                    | [Darrell and Pentland '93]<br>[Gavrila and L. Davis '95]<br>[Yacoob and Black '98]<br>Ali and Aggarwal '01]<br>[Veeraraghavan et al. '06]<br>[Lublinerman et al. '06]<br>[Jiang et al. '06]<br>[Vaswani et al. '03] <sup>G</sup> | [Yamato et al. '92]<br>[Starner and Pentland '95]<br>[Bregler '97]<br>[Bobick and Wilson '97]<br>[Oliver et al. '00]<br>[Park and Aggarwal, '04]<br>[Natarajan and Nevatia '07]<br>[Moore et al. '99] <sup>0</sup><br>[Gupta and Davis '07] <sup>0</sup><br>[Filipovych and Ribeiro '08] |  |  |  |  |
| Veighbor-based<br>ncluding SVM) | [Sato and Aggarwa1'04]                                  | [Efros et al. '03]<br>[Yilmaz and Shah '05]<br>[Ke et al.' 07]                   | [Shuldt et al. '04]<br>[Blank et al. '05]<br>[Scovanner et al. '07]<br>[Laptev et al. '08]                 |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Statistical<br>matching         | [Sheikh et al. '05]<br>[Khan and Shah '05] <sup>G</sup> |                                                                                  | [Chomat and Crowley '99]<br>[Niebles et al. '06, '08]<br>[Wong et al. '07]<br>[Lv et al. '04] <sup>G</sup> |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                          |  |  |  |  |

## Space-time approaches

- Videos as 3-D XYT volumes
- Problem: matching between two volumes
  - Match volumes directly
    - Compare volumes from testing videos with those from training videos.



#### Training video

#### Testing video

## Motion history images

- Matching two volumes
- Bobick and J. Davis, 2001
  - Motion history images (MHIs)
  - Weighted projection of a XYT foreground volume
  - Template matching

[Bobick, A. and Davis, J., The recognition of human movement using temporal templates. IEEE T PAMI 23(3), 2001]





sit-down



sit-down MHI



arms-wave



crouch-down



crouch-down MHI

## 3-D volume matching

#### Ke, Suktankar, Herbert 2007

- Volume matching based on its segments.
- Segment matching scores are combined.

Space-time template volume chosen from training video

Shape and Flow Correlation







Input Video

Space-Time Volumes

**Recognized** Action

[Ke, Y., Sukthankar, R., and Hebert, M., Spatio-temporal shape and flow correlation for action recognition. CVPR 2007]

Space-Time Region Extraction

## Global features from volumes

#### • Efros et al. 2003

- Concatenated optical flow features from 3-D XYT volumes
- Analyzed soccer plays from lowresolution videos.



[Efros, A., Berg, A., Mori, G., and Malik, J., Recognizing action at a distance, ICCV 2003]

## Sparse features from videos

- Problem: matching between two videos
  - Match volumes directly?
  - Extracts sparse features -
    - Video version of SIFT features



SIFT for images



Features for videos

## Sparse features from videos

- Spatio-temporal features
  - Reliable under noise, background changes, lighting condition changes, ...
  - Laptev 2003, Dollar et al. 2005



## **Cuboid features**

- Cuboid descriptors
  - Dollar *et al.*, Cuboid, VS-PETS 2005
  - Appearances of local 3-D XYT volumes
    - Raw appearance
    - Gradients
    - Optical flows
  - Captures salient periodic motion.



[Dollar, P., Rabaud, V., Cottrell, G., and Belongie, S., Behavior recognition via sparse spatio-temporal features, VS-PETS 2005]

## STIP interest point detector

- Laptev and Linderberg 2003
  - Simple periodic actions
    - Spatio-temporal local features + SVMs
  - Introduced the KTH dataset
  - Local descriptor based on Harris corner detector



[Schuldt, C., Laptev, I., and Caputo, B., Recognizing human actions: A local SVM approach, ICPR 2004]

## **Bag-of-words representation**





Classify features based on their appearance Histogram (bag-of-words) similarity





## pLSA models for actions

- pLSA from text recognition
  - Probabilistic latent semantic analysis
  - Reasoning the probability of features originated from a particular action video.



[Niebles, J. C., Wang, H., and Fei-Fei, L., Unsupervised learning of human action categories using spatial-temporal words, BMVC 2006]

## Approach overview

- Recognition using local spatio-temporal features
  - Bag-of-words
  - Classifiers
    - e.g. SVMs, pLSA, ...



#### Extensions

- Structural considerations
- Hybrid features
- Grouping features

## Structural considerations

- Bag-of-features ignores structure.
- Structures?
  - Wong et al. 2007
    - pLSA-ISM: encodes relative locations of features
  - Savarese et al. 2008
    - Feature correlation: pairwise proximity



[Wong, S.-F., Kim, T.-K., and Cipolla, R., Learning motion categories using both semantic and structural information, CVPR 2007] [Savarese, S., DelPozo, A., Niebles, J., and Fei-Fei, L., Spatial-temporal correlatons for unsupervised action classification, WMVC 2008]

## Local features for movie scenes

- Laptev et al. 2009 movies
  - Movie scenes with camera movements
    - Instantaneous actions



- Improved their local descriptor [Laptev 03] for analyzing movie videos.
  - Gradients + optical flows



## **Grouping features**

- Groups a small number of features
  - 2~3 features which appear jointly
  - Spatially/temporally adjacent features
    - grouping
- Multiple levelsHierarchical?



[Kovashka A. and Grauman K., Learning a hierarchy of discriminative space-time neighborhood features for human action recognition, CVPR 2010]

## XYT approaches: pros and cons

#### Advantages

- Robust under noise
  - Background changes, camera movements, …
  - YouTube-type videos
- Limitations
  - Bag-of-words
    - Spatio-temporal relations among features are ignored.
  - Not hierarchical
    - Difficult to model complex activities

## Summary: single layered

In general, suitable for *action* recognition

- Single actor
- Structural variations?
- Handle uncertainties reliably
  - Strong to noise, background, illuminations, ...
- Stochastic decision
  - Can be served as building blocks.
- A large number of training videos required.

## Datasets

- KTH dataset
  - Single action video classification
    - Single actor
    - One action per video

- Weizmann dataset
  - Similar to the KTH dataset (single action)





## **KTH results**



## New datasets

- Hollywood dataset [Laptev 07,08]
  - Movie scenes
  - Goal: recognition in complex environments
    - Moving cameras
    - Background changes
  - Action classification
    - Segmented videos
    - Atomic movements (e.g. kissing)



## New datasets

#### UT-Interaction dataset

- Multiple actors
  - Human interactions
  - Pedestrians
- Continuous videos
- UT-Tower dataset
  - Low-resolution
  - Simple actions





## Single layered: References

#### **Space-Time approaches**

- Bobick, A. and Davis, J., The recognition of human movement using temporal templates. IEEE T PAMI 23(3), 2001.
- Efros, A., Berg, A., Mori, G., and Malik, J., Recognizing action at a distance, ICCV 2003.
- Schuldt, C., Laptev, I., and Caputo, B., Recognizing human actions: A local SVM approach, ICPR 2004.
- Yilmaz, A. and Shah, M., Recognizing human actions in videos acquired by uncalibrated moving cameras, ICCV 2005.
- Dollar, P., Rabaud, V., Cottrell, G., and Belongie, S., Behavior recognition via sparse spatiotemporal features, VS-PETS 2005.
- Niebles, J. C., Wang, H., and Fei-Fei, L., Unsupervised learning of human action categories using spatial-temporal words, BMVC 2006.
- Ke, Y., Sukthankar, R., and Hebert, M., Spatio-temporal shape and flow correlation for action recognition. CVPR 2007.
- Wong, S.-F., Kim, T.-K., and Cipolla, R., Learning motion categories using both semantic and structural information, CVPR 2007
- Savarese, S., DelPozo, A., Niebles, J., and Fei-Fei, L., Spatial-temporal correlatons for unsupervised action classification, WMVC 2008.
- Laptev, I., Marszalek, M., Schmid, C., and Rozenfeld, B., Learning realistic human actions from movies, CVPR 2008.

## Singled-layered: References (2)

#### Sequential approaches

- Yamato, J., Ohya, J., and Ishii, K., Recognizing human action in time-sequential images using hidden Markov model. CVPR 1992.
- Gavrila, D. and Davis, L., Towards 3-D model-based tracking and recognition of human movement. In International Workshop on Face and Gesture Recognition 1995.
- Starner, T. and Pentland, A., Real-time American Sign Language recognition from video using hidden Markov models. International Symposium on Computer Vision, 1995.
- Oliver, N. M., Rosario, B., and Pentland, A. P., A Bayesian computer vision system for modeling human interactions. IEEE T PAMI, 2000.
- Park, S. and Aggarwal, J. K., A hierarchical Bayesian network for event recognition of human actions and interactions. Multimedia Systems, 2004.
- Natarajan, P. and Nevatia, R., Coupled hidden semi Markov models for activity recognition. WMVC 2007.