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Single layered 

approaches 

1990 ~ 



Two different views 

 Activities as human 

movements 

 Semantic-oriented 

 3-D body-part 

estimation 

 Tracking 

 

 

 

 Sequence 

 Activities as video 

observations 

 Data-oriented 

 Spatio-temporal 

features 

 Bag-of-words 

 

 

 

 Space-time distribution 
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Single layered 

approaches 

Sequential approaches 

1990s 
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Sequential approaches 

 Actions as a set of videos 

 Videos as feature sequences 



Sequential approaches 

 Motivation 

 An action is a sequence  

of body-part states 

 Each frame in an action  

video describes  

a particular body-part  

configuration 

 Example: 

11 points 

body configuration of ‘kicking’ 
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Action recognition using HMMs 

 Recognition using hidden Markov models 

 Each HMM generates a particular sequence 

of features. 

 Matching observed features with the model. 

 An action -> a set of sequences of features 

 

 [Yamato et al. CVPR 1992]: Tennis plays 
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HMMs for actions 

 Human action as a pose sequence 

 Each hidden state is trained to generate a 

particular body posture. 

 Each HMM produces a pose sequence: action 
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Hidden Markov models 

 This is a classic evaluation problem of HMMs. 

 Given observations VT (a sequence of poses), find the 

HMM Mi that maximizes P(VT|Mi): forward algorithm. 

 Transition probabilities aij and observations 

probabilities bik are pre-trained using training data. 
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HMMs for hand gestures 

 HMMs for gesture recognition 

 American Sign Language (ASL) 

 Sequential HMMs 

 Features from colored globes 

10 

[Starner, T. and Pentland, A., Real-time American Sign Language recognition from video 

using hidden Markov models. International Symposium on Computer Vision, 1995.] 
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Dynamic time warping 

 Dynamic programming algorithm to match 

two strings (e.g. sequences). 

 [Gavrila and L. Davis, 1995] 

 Each frame generates a symbol (of a feature 

vector) 
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Coupled HMMs 

 Pentland CHMMs 

 Human-human interactions 

 Two types of states for two agents 

 Synthetic agents for training HMMs 

[Oliver, N. M., Rosario, B., and Pentland, A. P., A Bayesian computer vision sys- 

tem for modeling human interactions. IEEE T PAMI, 2000.] 

Vs. 



HMM Variations 

 Coupled hidden semi-Markov models 

 Natarajan and Nevatia 2007 

 Human-human interactions 

 Activities with varying durations 

 Models probabilistic 

distributions of state 

durations. 

13 

[Natarajan, P. and Nevatia, R., Coupled hidden semi Markov models for activity recognition. 

WMVC 2007] 
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Dynamic Bayesian networks 

 Diverse variations 

 Dynamic Bayesian  

networks 

 Body-part analysis 

 

 

[Park, S. and Aggarwal, J. K., A hierarchical Bayesian network for event recognition of 

human actions and interactions. Multimedia Systems, 2004] 



Hierarchical human-body modeling 
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Space-time trajectories 

 Trajectory patterns 

 Yilmaz and Shah, 2005 – UCF 

 Joint trajectories in 

3-D XYT space. 

 Compared trajectory  

shapes to classify 

human actions. 

[Yilmaz, A. and Shah, M., Recognizing human 

actions in videos acquired by uncalibrated 

moving cameras, ICCV 2005] 
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Sequential approaches - summary 

 Designed for modeling sequential dynamics 

 Markov process 

 Motion features are extracted per frame 

 Limitations 

 Feature extraction 

 Assumes good observation models 

 Complex human activities? 

 Large amount of training data 
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Single layered 

approaches 

Space-time approaches 

2000s 



19 

Space-time approaches 

 Actions as a set of videos 

 Videos as space-time volumes 
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Space-time approaches 

 Videos as 3-D XYT volumes 

 Problem: matching between two volumes 

 Match volumes directly 

 Compare volumes from testing videos with those 

from training videos. 

t 

 
t 

 

similar? 

Training video Testing video 
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Motion history images 

 Matching two 

volumes 

 Bobick and J. Davis, 

2001 

 Motion history images 

(MHIs) 

 Weighted projection of 

a XYT foreground 

volume 

 Template matching 

 [Bobick, A. and Davis, J., The recognition of 

human movement using temporal templates. 

IEEE T PAMI 23(3), 2001] 
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3-D volume matching 

 Ke, Suktankar, Herbert 2007 

 Volume  

matching  

based on its  

segments. 

 Segment 

matching  

scores are 

combined. 

[Ke, Y., Sukthankar, R., and Hebert, M., Spatio-temporal shape and flow correlation for action 

recognition. CVPR 2007] 
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Global features from volumes 

 Efros et al. 2003 

 Concatenated optical flow features from 3-D 

XYT volumes 

 Analyzed 

soccer plays 

from low- 

resolution 

videos. 

[Efros, A., Berg, A., Mori, G., and Malik, J., Recognizing action at a distance, ICCV 2003] 
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Sparse features from videos 

 Problem: matching between two videos 

 Match volumes directly? 

 Extracts sparse features - 

 Video version of SIFT features 

t 

 

SIFT for images Features for videos 
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Sparse features from videos 

 Spatio-temporal features 

 Reliable under noise, background changes, 

lighting condition changes, … 

 Laptev 2003, Dollar et al. 2005 

(a) (b) (c) 



26 

Cuboid features 

 Cuboid descriptors 

 Dollar et al., Cuboid, VS-PETS 2005 

 Appearances of local 3-D XYT volumes 

 Raw appearance 

 Gradients 

 Optical flows 

 Captures salient  

periodic motion. 

 

 [Dollar, P., Rabaud, V., Cottrell, G., and Belongie, S., Behavior recognition via sparse 

spatio-temporal features, VS-PETS 2005] 
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STIP interest point detector 

 Laptev and Linderberg 2003 

 Simple periodic actions 

 Spatio-temporal local features + SVMs 

 Introduced the KTH dataset 

 Local descriptor 

based on Harris  

corner detector 

[Schuldt, C., Laptev, I., and Caputo, B., Recognizing human actions: A local SVM approach, 

ICPR 2004] 
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Bag-of-words representation 
t 

 

Classify features based on their 

appearance 

Histogram (bag-of-words) 

similarity 
t 
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pLSA models for actions 

 pLSA from text recognition 

 Probabilistic latent semantic analysis 

 Reasoning the probability of features 

originated from a particular action video. 

[Niebles, J. C., Wang, H., and Fei-Fei, L., Unsupervised learning of human action categories 

using spatial-temporal words, BMVC 2006] 



Approach overview 

 Recognition using local spatio-temporal 

features 

 Bag-of-words 

 Classifiers 

 e.g. SVMs, pLSA, … 

 Extensions 

 Structural considerations 

 Hybrid features 

 Grouping features 

30 

t 
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Structural considerations 

 Bag-of-features ignores structure. 

 Structures? 

 Wong et al. 2007 

 pLSA-ISM: encodes relative  

locations of features 

 Savarese et al. 2008 

 Feature correlation:  

pairwise proximity 

[Wong, S.-F., Kim, T.-K., and Cipolla, R., Learning motion categories using both semantic 

and structural information, CVPR 2007] 

[Savarese, S., DelPozo, A., Niebles, J., and Fei-Fei, L., Spatial-temporal correlatons 

for unsupervised action classification, WMVC 2008] 
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Local features for movie scenes 

 Laptev et al. 2009 – movies 

 Movie scenes with camera movements 

 Instantaneous actions 

 

 

 

 

 Improved their local descriptor [Laptev 03] for 

analyzing movie videos. 

 Gradients + optical flows 



Grouping features 

 Groups a small number of features 

 2~3 features which appear jointly 

 Spatially/temporally  

adjacent features 

 grouping 

 

 Multiple levels 

 Hierarchical? 

33 

[Kovashka A. and Grauman K., Learning a hierarchy of discriminative space-time neighborhood 

features for human action recognition, CVPR 2010] 
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XYT approaches: pros and cons 

 Advantages 

 Robust under noise 

 Background changes, camera movements, … 

 YouTube-type videos 

 Limitations 

 Bag-of-words 

 Spatio-temporal relations among features are 

ignored. 

 Not hierarchical 

 Difficult to model complex activities 
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Summary: single layered 

 In general, suitable for action recognition 

 Single actor 

 Structural variations? 

 Handle uncertainties reliably 

 Strong to noise, background, illuminations, … 

 Stochastic decision 

 Can be served as building blocks. 

 A large number of training videos required. 



Datasets 

 KTH dataset 

 Single action video 

classification 

 Single actor 

 One action per video 

 

 Weizmann dataset 

 Similar to the KTH 

dataset (single action) 
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KTH results 
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New datasets 

 Hollywood dataset [Laptev 07,08] 

 Movie scenes 

 Goal: recognition in complex environments 

 Moving cameras 

 Background changes 

 Action classification 

 Segmented videos 

 Atomic movements 

(e.g. kissing) 

38 



New datasets 

 UT-Interaction dataset 

 Multiple actors 

 Human interactions 

 Pedestrians 

 Continuous videos 

 

 UT-Tower dataset 

 Low-resolution 

 Simple actions  

39 
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