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Approach paradigm

= Description-based approach

= We represent the structure of the activities,
and recognize activities using semantic matching.

Hand shake = “fwo persons do shake-action (stretches,
: ) simultaneously, while "

Recognition by finding observations satisfying the definition.

Humans conceptual
knowledge on >
human activity

Human activity
representation

High-level
> activity
recognition

Atomic action
(e.g. arm stretch)

Low-level | recognition
processing e

Input sequence




Comparisons

Complex Complex Recognition of Handle
Levels of . \ .
Approaches ) temporal logical con- recursive imperfect low—
hierarchy ! ; e
relations catenations activities levels
limited
Statistical (depends on N,
data amount)
Syntactic unlimited N N,
a sub—event
Siskind 2001 unlimited participates N
only once
Hongeng et limited J J
al. 2004 (3-levels)
Vu et al. o conjunctions
5003 unlimited N only
Ryoo and
Aggarwal unlimited N, N N N
2009
Gupta et al. limited J network form J
2009 (2—levels) only
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Recognition of human interactions

Semantic layer

Interaction:

a
in time interval

“pushed” by Person
P Y A <4,20>

Gesture layer

A

# <1,20> :Facing right *  <1,20> :Facing left
<1,20> : Arm staying <4,20> : Arm stretching
s L <1,20> :Leg staying <1,20> : Leg staying
A
Pose layer
® 1 :Arm withdrawn . 1 : Arm withdrawn
8 :Arm withdrawn 8 :Arm somewhat stretched
(L 13 : Arm withdrawn 13 : Arm fully stretched

Body-part layer

"

4

i e |

A= "
@.&‘A_A
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Input sequences

Interaction

Gesture

= Elementary
movement of a
person

Pose

= Abstract status
of a body part.

Body-part
feature.

= Numerical status
of a body part.

Ryoo and Aggarwal,

CVPR 2006
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Atomic actions

= QOperation triplets <agent, motion, target>
= Gesture together with subject and object information.

= Unit human activity.
= Computed based on gestures.

= Ex> person1 stretches his/her arm
- <p1’s arm, stretch, null>

= Time intervals

= Ex> Time intervals detected for Pointing action

Pl:Head :222222222222222222

P1:ArmV :322021221111122333

Pl:ArmH:1 d002‘22222222.2 110¢

)

Sequences of poses

<pl’s arm, stretch, p2> —~~———> T

<p1’s arm, stay stret., p2> -------- 4 R

<p1’s arm, withdraw, null> _____________________ —

Time intervals of operation triplets



Semantic layer recognition

4 )

PMleghigisunderstandesiiend
presematioh@bPainching

@ Similar?

<p2’s head, face left, null> ----<

<p1’s arm, withdraw, nulll> --— etttk

Tim¥idde vhie ofagiestisres



Human activity representation

= Semantics = Syntax
= Knowledge on the structure = Rules to construct formal
of an activity. representation.
Punching is a sequence of o Organizes a set of
hand stretch and withdrawal. vocabularies to describe
=Time intervals the activities’ structure.
= Allen’s temporal predicates = Context-free grammar

Punching_action(i) = (

list(  def(‘x’, Arm_Stretch(i)),
x=arm_ y=arm_ and( frfig(:? H‘r;_’yvnhdrawo» ’
| stretch(pl)“ withdraw(p1) | and( start;(‘x’ ,‘thiS’)
finishes(‘y’, ‘this’)) ) );

Conceptual/verbal description Machine-understandable language
9
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Description-based

Hierarchical activity representation

= Representation of the ‘shake-hands’ interaction

Shake hands ShakeHandsInteractions(i, j) = (

interaction list( def(‘x’, ShakeHandsAction(1)),
list( def(‘y’, ShakeHandsAction(j)),
CEG def(‘z’, TouchingInteraction(i, j))) ),

Syntax and(and(during(*2’, *x’), during(*z’, *y’)),
T .. Hand shaké™Z (o PusdoHa gigs(= > "this))

jn;j\ InteractionName(i, j}* = " InteractionExp(i, j)*:" %}I )

— 1(i)%, " person ()4 = n o r h h
e . SIAGAGHOL SEetghet stays stretched,
o et CUlist("def(x’, Arm_Stretch(i)),

st simultapge defisyV AR [Stay [Stiched(i)),
Ir ionDefs(i, j, var) PR

def(‘z’, Arm_withdraw(i))) ),
and( and( meets(‘x’, ‘y’), meets(‘y’, ‘z’)),
and( starts(‘x’, ‘this’), finishes(‘z’, ‘this’)))
);
TouchingInteraction(i, j)=(null, touch(i, j, 0));
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Hierarchical recognition algorithm

= Recognition process of the ‘Shake-hands’ interaction.
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Continued and recursive activities

* |[nteraction ‘fighting’

= Composed of multiple negative interactions
Punching + kicking + pushing + punching + ...
= |terative approach is taken.




Experiments - Simple interactions

= Recognized 8 types of simple interactions, which were
recognized in Park and Aggarwal, 2004

= (approach, depart, point, shake-hands, hug, punch, kick, and
push)

= A videos of a sequence of interactions are taken. (continuous
executions)

= |nteractions are described in more detailed and formal way,
resulting better recognition accuracy.

13



Example Experiment - Fighting

Input video:

Poses:

Pl:ArmV
P1:ArmH

PZ:ArmV
P2:ArmH

Time

:3112222222131121000012112331133103
:1000000011111112222212111110001222

:3332100000121122222120111110000022
:0001121222211000000111111112211222

Gestures
and
activities:

Processed video:

P1: Arm Stretch

Pl Atm Withdraw

P2: Arm Stretch

P2: Arm Withdraw :

Punching(pl)
Punching(p2)
Pushing(p2)
Fighting(p1,p2)




Past-Now-Future networks

= Pinhanez and Bobick 1998

= PNF networks to represent temporal structure
of an activity.

= Kitchen activities:

W Yo
<PN,N.F > pick-up-bowl <P,N,NF >
<PN,NF,F > &’,PN,NF >
<PNFE.F.F >

@each—for—bow; grasp—bowl)

<PN,NEF,F >

< PN,N,NF > PN,NF.F >

< PNF,F,F >

_b
bowl-out-of-hands ) bowl-in-hand
CD?\. ou o an S__‘/ e{PN’F’F:} ’CDE‘\. 1n ann S)

[Pinhanez, C. S. and Bobick, A. F., Human action detection using PNF propagation
of temporal constraints. CVPR 1998]
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Event logic

= Siskind 2001

= Logical concatenations of predicates
= Time intervals?

[ Oz =yA-Cz=aA—-Cz=yA \
SUPPORTED(y) A ~OATTACHED(x, 2)A
( ~OATTACHED(z, y) A ~<OSUPPORTS(x, y)A )
SUPPORTS(z,y)A
—OSUPPORTED () A 7" OATTACHED(y, 2)A
—~OSUPPORTS(y, ) A 7OSUPPORTS(y, 2)A
PickUP(z,y, z) = |_ —~OSUPPORTS(z, z) A ~OSUPPORTS(z, T)
[ATTACHED(x,y) V ATTACHED(y, 7)) ; }
ATTACHED(x, y) A SUPPORTS(x, y)A
—~OSUPPORTS(Z, y)A
—~OSUPPORTED () A "OATTACHED(y, 2)A
—~OSUPPORTS(y, ) A ~OSUPPORTS(y, 2)A
\ | |_ —~OSUPPORTS(x, 2) A ~OSUPPORTS (2, x) ) )

Frame 57 Frame 67 Frame 68 Frame 80

[Siskind, J. M., Grounding the lexical semantics of verbs in visual perception using force
dynamics and event logic. Journal of Artificial Intelligence Research (JAIR) 15, 2001]



Representation Ianguages

= Nevatia, Zhao,
and Hongeng 2003

= VERL - language

= \Vu, Bremond,
Thonnat 2003

= Similar to Nevatia
et al. 2003

StealingByBlocking(A0,Al,A2, A3, A4,0)

\ N
Multi-Thread Events

53: 34 85:
i‘\pprSmpBI\-. ApprStopBtw | Block({A2,A3, | Take Away
(A2.A1,0) (A3,A0,0) | AlLAD,O) (A4.0)

Single-Thread Events

. &qpi’}
: ("on\er\
. "‘ (ALAD)

P1: P2:
Approach StopAt Approach l Between | ......

p

heading) (slowing
toward

getting
closer

Mobile Object Properties

Scenario (Bank_attack,
Characters( (cashier:Person),

SubScenarios (
(cas at pos,inside zone,cashier,"Back Counter")
(rob_enters, changés_zone, robber, -
"Entrance zone", "Infront Counter")
(cas_at safe, inside zone, cashier, "Safe")
(rob at safe, inside zone, robber, "Safe") )
ForbiddenSubScenarios (—
(any in branch, inside zone,

Constraints (

(robber:Person))

any p,"Branch"))

during cas at pos)

Temporal ((rob enters
(rob enters before cas at safe)
(cas” at pos before cas at safe)
(rob_enters before rob_at safe)
(rob at safD during cas at _safe))

Atemporal ( (cashier # robber))
robber)

Forbidden ( (any o # casklﬂ’) (any p #
(any_in branch during ’ob at safe))))

= Recursive? Uncertainties?
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Stochastic approaches

= Limitations of the conventional description-
based approaches

= Uncertainties? — stochastic recognition

* Probabillistic framework needed
= [Ryoo and Aggarwal, IJCV 2009]
= [Tran and Davis, ECCV 2008] - MLN

18



Hierarchical matching algorithm

= Recognition process tree of ‘steal(p1, s1, p2)

Parameter Objects:
(person pl, suitcase s1, person p2)

Ly

P Ob] (person pl, suitcas ; n p2, suitcase sl)

[ Carry(p1, s1) } S IEE —I Stay(s1) lL_.f___ _meets __

____l___d
) — — — — — — N e e
e L
el — — — — — — —— N e e e - -
e L .

A A A
\AA 4 \ 4

r___i___\ 1 __bs____ r___.A./___] 1 ___!____]
| MoveR(pl) |—e—qfa—s—l MoveR(sl) I MoveL(p2) riqfa—s—l MoveL(sl) |
| > | > ! | - «—>- | ------ «—>-
H H : H H

Recognition results from the object and motion layers

19



Description-based

Probabilistic recognition

* Probability of the activity given observation

I_j(H{S,E}|IT)

— P({R}|sub({R})) . P(sub({R})|sub(sub({R})))
P(sub”({R})|1")

d—1

=TT P(sub’({R})|sub* ({R})) . P(sub({R})ILT)

i=0
d=—1 . .
— H P(sub’({R})|sub™ ({R})) . P(a1,...,an|I")
i=(
— yj : yj [F(alg...gaﬂglg oy gn)|e P(glg...ggﬂh']”)
g1 An
Structural Gesture detection
similarity confidence

20



Experiments

= Recognized following six types of interactions.

= Each activity was tested with at least 10 sequences.
Carrying a box, leaving a box, placing a box into a trash bin.
Carrying a suitcase, leaving a suitcase, stealing the suitcase.

= Object and Motion layer trained with 5 sequences.

=
i 'l_.!-'\-:
. k]
Ilf:'. rimpp -::t
E *
1 ¥
i
d T
= =

Carry(Personl, SuitCasel) : -----=------mm oo oo oo
Stay(SuitCasel) : — === == - s m e e

Carry(Person2, SuitCasel) : = === ccmmmmm oo
Steal(Personl, SuitCasel, Person2) & - - ---- - oo oo oo



Experiments

= Example
= a person placing a box into a trash bin

|
2

4V

Time
Move(Personl,right) : - - - - - - - - - - - - - - - - 0 - -
Move(Box1,right) ; == ccccccccccccccccccccccccccccccccccaaa
Move(Personl, left): == == ==- =2 m e e e m - -
Move(Boxl,down): - - -=- - - - - - - - - - oo oo -
Carry(Personl,Boxl): = - ---=----- - - -« - - & - oo e - -
Trash(Personl, Box1, TrashBinl): =======c=ccccccccccccccccccccscccccccana==

22



Experiments - Performance

= Recognition accuracy (true positives):

= Compared with a multi-object version of previous works.

P 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Carry Leave Steal Carry Leave Trash Total
—Suitcase —Suitcase —Suitcase - — —

2 atomics 3 atomics S5 atomics 2 atomics 3 atomics 3 atomics
1 spatials 1 spatials 2 spatials 1 spatials 1 spatials 3 spatials

» False positives rates are almost zero for all activities.

23



Advantages

Ability to represent and recognize an activity composed
of concurrent sub-events.

= Ex> “touching occurred during pushing”

this==Pushing_interactions(p1,p2)

<
<

. i=Arm Stretch(pl) j=Arm Stay Stretched(p1)

< i
< P

»
1

k =Touch(p1, p2) 1 =Depz§r1rt(p2, pl)

Ability to represent and recognize ‘recursive activities’
= Ex> Fighting = Fighting + another negative interaction.

Less data required for training.

= ‘Structure of activities’ are encoded based on human knowledge.

High recognition accuracy?

24



2008, 2009

Description-based
approaches

Group activities

25



Group activity

= Events performed by
groups
= Various types of
complex activities

= Group-person interaction
= Group-group interaction

= Uncertain nature
= Varying # of

participants Growp Siesdind (@mp %s. [@2p)
= Dynamic spatial A person with red shirts is
relation taking the laptop on the table

while the others are talking
Ryoo and Aggarwal,
CVPR-SIG 09, 1JCV 11



Representation

u GI‘OU p Steal | ng Formal representation:

1. Meaibefivianiab)e® b in Owners,
3 cin Thieves

2. def(é¢finfakedddject(a)),
def(t2, Distract(c, b))

E c 3. Boedisatss this),
Distract! during (t1, t2)
Distrocthdiatract! Time

4 4
=

c

Distract (r1, g1) --<

v

Thieves

’t ject' ’ :
Object TakeObject (r4) ---Zl _______ e during

Time intervals of activities of
individual members




Recognition overview

= 3 key componNents Generates a pool of member candidates

Distract Distract -+——
. .. Distract - >

Take .Dis?acPiStraCt
O

What? .
= ReCOgnitiOH: NP-hard. Approximation required.
= Obtain a pool of group member candidates

with non-zero probability.

Not many persons perform sub-events.
= M =argmax,, P(G'(M)|O")

28



Temporal constraints

= Hierarchical temporal constraint matching.

Member variables:
dain Thieves, Vb in Owners, dcin Thieves |

[ Approach(c, b) F--2efere { Distract(c, b) } - during__ {TakeObj ect(a)}

v v v

Video inputs

29



Group candidates

= Among possible groupings, ®
* Find a set of group members: ®

M ={m,m,,...,m,,} ®
which maximizes the overall
probability. O

= Bayesian formulation
P(G'|0)=max,, P(G'(M)|O")
7o (M)

Y (M) + 7 (M)

— max

where 7z.(M)=P(O,, |G (M))-P(G'(M))

30



Bayesian formulation

= C.: persons performing it" sub-event.
PO, |G' (M) = D P(O,|M,Q0,5,...5) P(S}',....S," | G' (M)

Sfla---»SZRgpresented relations Represented sub-evgnts
[1PcellS,.s)|[[1PS] G (M)

[
T, (M) _ re
S{IZ;S:? . Hd . e_(|Ki_Ci|/|Ki|+|LimCi|/|Ki|) . Gf (M)

Structural similarity

= Essential and anti-essential relations: Ki, L

| Ki B Ci |: ZE[S;Z. (k) | Ol] 3Cﬂasel: Vc;sez: —
keK;-C; ’>
. Case3 Case4:
LAC = Y ES ()]0 N E=3
leL,NC;

-

'/
\

\'
A



Markov chain Monte Carlo

= MCMC-based probability estimation.
* Provides a set of samples from the distribution.
= Models the probability distribution.
= Metropolis-Hastings algorithm
« P(M, ,,M")=min(1,q)
_ wo(M")-q(M', M)
rg(M)-q(M,M")
= Actions:
= Add: M'=M,

= Remove: M'=M,, —{m}

m 4

L, U{m} wherem e C,




Experimental setting

= \We have tested 45 sequences of 8 activities.
= 320240 with 10 fps

= CCTV videos download from YouTube.
= Group stealing in Malaysia and group arresting in UK.
* Videos that we have taken with 10 participants in
various environments.
= A group of people carrying a large object.
= A group of people assaulting a person.

Videos of real human activities
33



Experiments - stealing

= Group stealing

= One of thieves
steals a laptop,
while the other
thieves are
distracting the
shop owner.

34



Experiments - arresting

= Group arresting
= A group of
policemen
arresting a group

of suspicious
persons.

= Color histogram

Policemen

D Criminal
candidates

Pedestrians

35



Experiments — group assault

= Highly stochastic

= There may be (and may not be) attackers whose
guarding the area, or just watching.

= 10 videos.




Experiments — group assault

= Highly stochastic

= There may be (and may not be) attackers whose
guarding the area, or just watching.

= 10 videos.




Experimental results

= Recognition accuracy

= False positive rates are almost 0 because of the detailed
representations: previous, deterministic, stochastic.

Move Carry CarryCmd Fight Fight Steal Arrest Assault Total
G G GP GG G GG GG GG

v v IV V4 T4 IV Vd ==
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2009

Spatio-Temporal
Relationship Match



Description-based vs. Space-time

»= Description-based = Space-time
= High-level activities = Reliable under noise
Hierarchical = Difficult to model
= Semantic structures complex activities
= Difficult to cope with = Miss semantic
noise structures

Shake-hands
Interaction(i, j)

Shake-hands  |during | Touching |.during.| Shake-hands
Action(i) Action(j)
™

Arm stretch ,,_m,,E?_t,?[ Arm stay  |TMeetSYArm withdraw

Gesture detection results from the Lower layers

40



Space-time approaches

= Video classification
= Each video Is represented as a histogram

Huggin
Shaking hands , 99119

Punching Pushing

Spatio-temporal features '

= | imitation:

= Unable to model complex activities  Laptev 04,
Dollar et al. 05

41



Spatio-temporal relations (STRS)

. t
y 35 _12. overlaps(12, 35)

P before(17, 12)

> g =y ] BESEEESE R overlaps(5, 17)

- overlaps(12, 35)

before(17, 12)
equals(5, 17)

3 X >
Videos Feature relations | dov oo



Histogram of STRs
& @ =

y
e 12- overlaps(12, 35)
‘ [ I
5 overlaps 17
----------- before(17, 12) 5 before 35
12 before-1 17
""""""""" overla pS(S, 17) 12 overlaps 35
17 before 35
" >
\ t f\
g 35
g o overlaps(12, 35)
2 a4
/ It 5 equals 17
A before(17, 12) 5 before 35
|/ 12 before-1 17
/] __14:.; ---------- equals(5, 17) 12 overlaps 35
|§ 1717 17 before 35
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S TR-match learning

= Supervised learning

= Videos with activity labels are provided.

Pushing

5 overlaps 17
5 before 35
12 before-1 17

?

_

. Hugging

12 overlaps 35
17 before 35

Histogram of
Relationships

Punching g,

aking hands

Feature space

»
|

44



STR equations

= STR match considers distributions of pair-
wise relationships among features.

= Histogram construction
105 () = {(fa, f5) | fa € Hi(v)
Afe € Hj(v) Atrel(fa, fo) Ni < j}
= STR dlstance

Kr(v1,02) S‘ S‘ > (T ), 15 (02))

1=1 57=1 trel

+3° 1St ), S5 )

srel

45



STR-match activity detection

= Must detect starting time and ending time
= Models starting XYT location of an activity.

= Each feature pair in a matching training video
makes a vote.

y ! t/"’///,/ l/i y tﬁf%f,/ 9

/I"—

1, P / l/ 7

/47 . ' A S

T e I ’l A

/ //4'/ 7" '-‘/
# ////// > II/ 7 /

& || v7 7 |£ ;9

1T g‘ 17
7

V. start & expected_starting(v,,,)

X
Original sta rtin@ Expected starting

6



Hierarchical recognition

= Atomic action detections as new features

= Localization ability enables hierarchical
recognition

47



Experiments

= KTH dataset

= Public dataset composed of simple actions
= Walking, jogging, running, waving, ...

System

Classification accuracy

Performance increase

Laptev et al. '08

Ours
Savarese et al. '08
Niebles et al. '08
Dollar et al. ‘05
Schuldt et al. '04

91.8/ - %
91.1 / 93.8 %
- [/ 86.8 %

- /81.5%

- [/ 81.2%
71.7/ - %

+2.1%
+12.6%

+5.6%
+0.3%

48



Experiments: high-level activities

= High-level human activity detection results
= Changing backgrounds, lighting conditions,




STR-match summary

= Detection from continuous videos
= Localization using voting-based method

= Noisy observations
= Different backgrounds/lightings
= Uncertainties

* Human-human interactions
= Hierarchical recognition

= Future work
= Hierarchy learning algorithm

50
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